×

Higher integrability for variational integrals with non-standard growth. (English) Zbl 1462.49015

Summary: We consider autonomous integral functionals of the form \[ \mathcal{F} [u]:=\int_\Omega f(Du)\,dx \text{ where } u:\Omega \rightarrow \mathbb{R}^N,\, N\geq 1, \] where the convex integrand \(f\) satisfies controlled \((p,q)\)-growth conditions. We establish higher gradient integrability and partial regularity for minimizers of \(\mathcal{F}\) assuming \(\frac{q}{p}<1+\frac{2}{n-1}\), \(n\geq 3\). This improves earlier results valid under the more restrictive assumption \(\frac{q}{p}<1+\frac{2}{n}\).

MSC:

49J21 Existence theories for optimal control problems involving relations other than differential equations
49N60 Regularity of solutions in optimal control
35J70 Degenerate elliptic equations

References:

[1] Acerbi, E.; Fusco, N., Partial regularity under anisotropic \((p, q)\) growth conditions, J. Differ. Equ., 107, 46-67 (1994) · Zbl 0807.49010 · doi:10.1006/jdeq.1994.1002
[2] Baroni, P.; Colombo, M.; Mingione, G., Regularity for general functionals with double phase, Calc. Var. Partial Differ. Equ., 57, 2, 62 (2018) · Zbl 1394.49034 · doi:10.1007/s00526-018-1332-z
[3] Beck, L.; Mingione, G., Lipschitz bounds and non-uniform ellipticity, Commun. Pure Appl. Math., 73, 944-1034 (2020) · Zbl 1445.35140 · doi:10.1002/cpa.21880
[4] Bella, P., Schäffner, M.: Local Boundedness and Harnack Inequality for Solutions of Linear Nonuniformly Elliptic Equations. Comm. Pure Appl. Math. 74, 453-477 (2021) · Zbl 1469.35073
[5] Bella, P.; Schäffner, M., Quenched invariance principle for random walks among random degenerate conductances, Ann. Probab., 48, 1, 296-316 (2020) · Zbl 1450.60064 · doi:10.1214/19-AOP1361
[6] Bella, P.; Schäffner, M., On the regularity of minimizers for scalar integral functionals with \((p, q)\)-growth, Anal. PDE, 13, 7, 2241-2257 (2020) · Zbl 1460.49027 · doi:10.2140/apde.2020.13.2241
[7] Bildhauer, M.; Fuchs, M., Partial regularity for variational integrals with \((s,\mu , q)\)-growth, Calc. Var. Partial Differ. Equ., 13, 4, 537-560 (2001) · Zbl 1018.49026 · doi:10.1007/s005260100090
[8] Bildhauer, M.; Fuchs, M., Twodimensional anisotropic variational problems, Calc. Var. Partial Differ. Equ., 16, 177-186 (2003) · Zbl 1026.49027 · doi:10.1007/s005260100147
[9] Bildhauer, M., Convex Variational Problems. volume 1818 of Lecture Notes in Mathematics (2003), Berlin: Springer, Berlin · Zbl 1029.49013
[10] Breit, D., Dominic, New regularity theorems for non-autonomous variational integrals with (p, q)-growth, Calc. Var. Partial Differ. Equ., 44, 1-2, 101-129 (2012) · Zbl 1252.49060 · doi:10.1007/s00526-011-0428-5
[11] Carozza, M.; Kristensen, J.; Passarelli di Napoli, A., Regularity of minimizers of autonomous convex variational integrals, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), 13, 4, 1065-1089 (2014) · Zbl 1311.49093
[12] Chlebicka, I., De Filippis, C., Koch, L.: Boundary regularity for manifold constrained \(p(x)\)-Harmonic maps. arXiv:2001.06243 [math.AP]
[13] Colombo, M.; Mingione, G., Regularity for double phase variational problems, Arch. Ration. Mech. Anal., 215, 2, 443-496 (2015) · Zbl 1322.49065 · doi:10.1007/s00205-014-0785-2
[14] Cupini, G.; Marcellini, P.; Mascolo, E., Local boundedness of minimizers with limit growth conditions, J. Optim. Theory Appl., 166, 1-22 (2015) · Zbl 1325.49043 · doi:10.1007/s10957-015-0722-z
[15] De Filippis, C.; Mingione, G., On the regularity of minima of non-autonomous functionals, J. Geom. Anal., 30, 2, 1584-1626 (2020) · Zbl 1437.35292 · doi:10.1007/s12220-019-00225-z
[16] De Filippis, C.: Partial regularity for manifold constrained \(p(x)\)-harmonic maps. Calc. Var. Partial Differ. Equ.58(2) (2019), Paper No. 47 · Zbl 1479.58015
[17] Eleuteri, M.; Marcellini, P.; Mascolo, E., Regularity for scalar integrals without structure conditions, Adv. Calc. Var., 13, 3, 279-300 (2020) · Zbl 1445.35159 · doi:10.1515/acv-2017-0037
[18] Esposito, L.; Leonetti, F.; Mingione, G., Higher integrability for minimizers of integral functionals with \((p, q)\) growth, J. Differ. Equ., 157, 2, 414-438 (1999) · Zbl 0939.49021 · doi:10.1006/jdeq.1998.3614
[19] Esposito, L.; Leonetti, F.; Mingione, G., Regularity results for minimizers of irregular integrals with \((p, q)\) growth, Forum Math., 14, 2, 245-272 (2002) · Zbl 0999.49022 · doi:10.1515/form.2002.011
[20] Esposito, L.; Leonetti, F.; Mingione, G., Sharp regularity for functionals with \((p, q)\) growth, J. Differ. Equ., 204, 1, 5-55 (2004) · Zbl 1072.49024 · doi:10.1016/j.jde.2003.11.007
[21] Evans, LC, Quasiconvexity and partial regularity in the calculus of variations, Arch. Rational Mech. Anal., 95, 3, 227-252 (1986) · Zbl 0627.49006 · doi:10.1007/BF00251360
[22] Fusco, N.; Sbordone, C., Some remarks on the regularity of minima of anisotropic integrals, Commun. Partial Differ. Equ., 18, 153-167 (1993) · Zbl 0795.49025 · doi:10.1080/03605309308820924
[23] Giaquinta, M., Growth conditions and regularity, a counterexample, Manuscr. Math., 59, 2, 245-248 (1987) · Zbl 0638.49005 · doi:10.1007/BF01158049
[24] Giusti, E., Direct Methods in the Calculus of Variations, viii+403 (2003), River Edge, NJ: World Scientific Publishing Co., Inc., River Edge, NJ · Zbl 1028.49001 · doi:10.1142/5002
[25] Harjulehto, P., Hästö, P., Toivanen, O.: Hölder regularity of quasiminimizers under generalized growth conditions. Calc. Var. Partial Differential Equations56(2) (2017), Paper No. 22, pp 26 · Zbl 1366.35036
[26] Hirsch, J.; Schäffner, M., Growth conditions and regularity, an optimal local boundedness result, Commun. Contemp. Math. (2020) · Zbl 1458.49009 · doi:10.1142/S0219199720500297
[27] Marcellini, P., Regularity of minimizers of integrals of the calculus of variations with nonstandard growth conditions, Arch. Rational Mech. Anal., 105, 3, 267-284 (1989) · Zbl 0667.49032 · doi:10.1007/BF00251503
[28] Marcellini, P., Regularity and existence of solutions of elliptic equations with \(p, q\)-growth conditions, J. Differ. Equ., 90, 1, 1-30 (1991) · Zbl 0724.35043 · doi:10.1016/0022-0396(91)90158-6
[29] Marcellini, P., Regularity for some scalar variational problems under general growth conditions, J. Optim. Theory Appl., 90, 1, 161-181 (1996) · Zbl 0901.49030 · doi:10.1007/BF02192251
[30] Marcellini, P.: Growth conditions and regularity for weak solutions to nonlinear elliptic pdes. J. Math. Anal. Appl. (2020), (to appear)
[31] Mingione, G., Regularity of minima: an invitation to the dark side of the calculus of variations, Appl. Math., 51, 4, 355-426 (2006) · Zbl 1164.49324 · doi:10.1007/s10778-006-0110-3
[32] Passarelli Di Napoli, A.; Siepe, F., A regularity result for a class of anisotropic systems, Rend. Ist. Mat. Univ. Trieste, 28, 1-2, 13-31 (1996) · Zbl 0909.49026
[33] Rǎdulescu, VD; Repovš, DD, Partial Differential Equations with Variable Exponents (2015), Boca Raton: CRC Press, Boca Raton · Zbl 1343.35003 · doi:10.1201/b18601
[34] Sverák, V.; Yan, X., Non-Lipschitz minimizers of smooth uniformly convex functionals, Proc. Natl. Acad. Sci. USA, 99, 15269-15276 (2002) · Zbl 1106.49046 · doi:10.1073/pnas.222494699
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.