×

Proof of two supercongruences of truncated hypergeometric series \({}_4 F_3\). (English) Zbl 1539.11010

Summary: In this paper, we prove two supercongruences conjectured by Z.-W. Sun via the Wilf-Zeilberger method. One of them is, for any prime \(p > 3\), \[ {}_4F_3 \left[ \begin{matrix} \frac{7}{6} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ & \frac{1}{6} & 1 & 1 \end{matrix} \Bigg| {-\frac{1}{8}} \right]_{\frac{p - 1}{2}} \equiv p \left(\frac{-2}{p}\right) + \frac{p^3}{4} \left(\frac{2}{p} \right) E_{p - 3} \quad \pmod{p^4}, \] where \((\frac{\cdot}{p})\) stands for the Legendre symbol, and \(E_n\) is the \(n\)-th Euler number.

MSC:

11A07 Congruences; primitive roots; residue systems
33C20 Generalized hypergeometric series, \({}_pF_q\)
11B65 Binomial coefficients; factorials; \(q\)-identities

Software:

SIGMA
Full Text: DOI

References:

[1] Chen, Y. G.; Xie, X. Y.; He, B., On some congruences of certain binomial sums, Ramanujan J., 40, 237-244, 2016 · Zbl 1343.11027 · doi:10.1007/s11139-015-9687-7
[2] Guo, V. J W., A q-analogue of a Ramanujan-type supercongruence involving central binomial coefficients, J. Math. Anal. Appl., 458, 590-600, 2018 · Zbl 1373.05025 · doi:10.1016/j.jmaa.2017.09.022
[3] Guo, V. J W., q-analogues of the (E.2) and (F.2) supercongruences of Van Hamme, Ramanujan J., 49, 531-544, 2019 · Zbl 1468.11065 · doi:10.1007/s11139-018-0021-z
[4] Guo, V. J W.; Liu, J-C, Some congruences related to a congruence of Van Hamme, Integral Transforms Spec. Funct., 31, 221-231, 2020 · Zbl 1434.11054 · doi:10.1080/10652469.2019.1685991
[5] Guo, V. J. W., Schlosser, M.: Some new q-congruences for truncated basic hypergeometric series: even powers. Results Math., 75, Art. 1 (2020) · Zbl 1442.33007
[6] He, B., On the divisibility properties of certain binomial sums, J. Number Theory, 147, 133-140, 2015 · Zbl 1394.11015 · doi:10.1016/j.jnt.2014.07.008
[7] Hu, D-W; Mao, G-S, On an extension of a van Hamme supercongruence, Ramanujan J., 42, 713-723, 2017 · Zbl 1401.11053 · doi:10.1007/s11139-015-9764-y
[8] Liu, J-C, Semi-automated proof of supercongruences on partial sums of hypergeometric series, J. Symbolic Comput., 93, 221-229, 2019 · Zbl 1418.68248 · doi:10.1016/j.jsc.2018.06.004
[9] Long, L., Hypergeometric evaluation identities and supercongruences, Pacific J. Math., 249, 2, 405-418, 2011 · Zbl 1215.33002 · doi:10.2140/pjm.2011.249.405
[10] Magnus, W.; Oberhettinger, F.; Soni, R. P., Formulas and Theorems for the Special Functions of Mathematical Physics, 25-32, 1966, New York: Springer-Verlag, New York · Zbl 0143.08502 · doi:10.1007/978-3-662-11761-3
[11] Mao, G-S, Proof of a supercongruence via the Wilf-Zeilberger method, J. Symbolic Comput., 107, 269-278, 2021 · Zbl 1472.11023 · doi:10.1016/j.jsc.2021.04.001
[12] Mao, G-S; Wang, C.; Wang, J., Symbolic summation methods and congruences involving harmonic numbers, C. R. Acad. Sci. Paris Ser. I, 357, 756-765, 2019 · Zbl 1455.11040 · doi:10.1016/j.crma.2019.10.005
[13] Mao, G-S; Zhang, T., Proof of Sun’s conjectures on super congruences and the divisibility of certain binomial sums, Ramanujan J., 50, 1-11, 2019 · Zbl 1428.11040 · doi:10.1007/s11139-019-00138-z
[14] Mattarei, S.; Tauraso, R., Congruences for central binomial sums and finite polylogarithms, J. Number Theory, 133, 131-157, 2013 · Zbl 1300.11020 · doi:10.1016/j.jnt.2012.05.036
[15] Morley, F., Note on the congruence 2^4n ≡ (−1)^n(2n)!/(n!)^2, where 2n + 1 is a prime, Ann. Math., 9, 168-170, 1895 · JFM 26.0208.02 · doi:10.2307/1967516
[16] Osburn, R.; Zudilin, W., On the (K.2) supercongruence of Van Hamme, J. Math. Anal. Appl., 433, 706-711, 2016 · Zbl 1400.11062 · doi:10.1016/j.jmaa.2015.08.009
[17] Schneider, C.: Symbolic summation assists combinatorics. Sém. Lothar. Combin., 56, Art. B56b (2007) · Zbl 1188.05001
[18] Sun, Z-H, Congruences involving Bernoulli and Euler numbers, J. Number Theory, 128, 280-312, 2008 · Zbl 1154.11010 · doi:10.1016/j.jnt.2007.03.003
[19] Sun, Z-W, Super congruences and Euler numbers, Sci. China Math., 54, 2509-2535, 2011 · Zbl 1256.11011 · doi:10.1007/s11425-011-4302-x
[20] Sun, Z-W, A refinement of a congruence result by van Hamme and Mortenson, Illinois J. Math., 56, 3, 967-979, 2012 · Zbl 1292.11040 · doi:10.1215/ijm/1391178558
[21] Sun, Z-W, A new series for π^3 and related congruences, Internat. J. Math., 26, 8, 1550055, 2015 · Zbl 1321.11023 · doi:10.1142/S0129167X1550055X
[22] Sun, Z-W, Open conjectures on congruences, J. Nanjing Univ. Math. Biquart., 36, 1-99, 2019 · Zbl 1449.11001
[23] Wolstenholme, J., On certain properties of prime numbers, Quart. J. Pure Appl. Math., 5, 35-39, 1862
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.