×

On an extension of a Van Hamme supercongruence. (English) Zbl 1401.11053

Summary: We prove a conjectural extension of a van Hamme supercongruence [L. Van Hamme, Lect. Notes Pure Appl. Math. 192, 223–236 (1997; Zbl 0895.11051)] due to Z.-W. Sun [Ill. J. Math. 56, No. 3, 967–979 (2012; Zbl 1292.11040)]. The proof is inspired by recent techniques due to R. Osburn and W. Zudilin [J. Math. Anal. Appl. 433, No. 1, 706–711 (2016; Zbl 1400.11062)], in particular the use of a certain WZ pair and congruences for quotients of Pochhammer symbols.

MSC:

11B65 Binomial coefficients; factorials; \(q\)-identities
11B68 Bernoulli and Euler numbers and polynomials
05A10 Factorials, binomial coefficients, combinatorial functions
11A07 Congruences; primitive roots; residue systems
Full Text: DOI

References:

[1] Berndt, B.: Ramanujan’s Notebooks. Part IV. Springer, New York (1994) · Zbl 0785.11001 · doi:10.1007/978-1-4612-0879-2
[2] Guillera, J.: Generators of some Ramanujan formulas. Ramanujan J. 11, 41-48 (2006) · Zbl 1109.33029 · doi:10.1007/s11139-006-5306-y
[3] Lehmer, E.: On congruences involving Bernoulli numbers and the quotients of Fermat and Wilson. Ann. Math. 39, 350-360 (1938) · Zbl 0019.00505 · doi:10.2307/1968791
[4] Long, L.: Hypergeometric evaluation identities and supercongruences. Pac. J. Math. 249, 405-418 (2011) · Zbl 1215.33002 · doi:10.2140/pjm.2011.249.405
[5] Morley, F.: Note on the congruence \[2^{4n}\equiv (-1)^n(2n)!/(n!)^224\] n≡(-1)n(2n)!/(n!)2, where \[2n+12\] n+1 is a prime. Ann. Math. 9, 168-170 (1895) · JFM 26.0208.02 · doi:10.2307/1967516
[6] Mortenson, E.: A p-adic supercongruence conjecture of van Hamme. Proc. Am. Math. Soc. 136, 4321-4328 (2008) · Zbl 1171.11061 · doi:10.1090/S0002-9939-08-09389-1
[7] Osburn, R., Schneider, C.: Gaussian hypergeometric series and supercongruences. Math. Comput. 78, 275-292 (2009) · Zbl 1209.11049 · doi:10.1090/S0025-5718-08-02118-2
[8] Osburn, R., Zudilin, W.: On the (K.2) supercongruence of Van Hamme. J. Math. Anal. Appl. 433(1), 706-711 (2016) · Zbl 1400.11062 · doi:10.1016/j.jmaa.2015.08.009
[9] Ramanujan, S.: Modular equations and approximations to \[\pi\] π. Q. J. Math. (Oxf.) (2) 45, 350-372 (1914) · JFM 45.1249.01
[10] Sun, Z.W.: Super congruences and Euler numbers. Sci. China Math. 54, 2509-2535 (2011) · Zbl 1256.11011 · doi:10.1007/s11425-011-4302-x
[11] Sun, Z.W.: On congruences related to central binomial coefficients. J. Number Theory 131, 2219-2238 (2011) · Zbl 1261.11019 · doi:10.1016/j.jnt.2011.04.004
[12] Sun, Z.W.: A refinement of a congruence result by van Hamme and Mortenson. Ill. J. Math. 56, 967-979 (2012) · Zbl 1292.11040
[13] Swisher, H.: On the supercongruence conjecture of van Hamme. Res. Math. Sci. 2, 18 (2015) · Zbl 1337.33005 · doi:10.1186/s40687-015-0037-6
[14] Tauraso, R.: Congruences involving alternating multiple harmonic sum. Electron. J. Comb. 17, #R16 (2010) · Zbl 1222.11006
[15] van Hamme, L.: Some conjectures concerning partial sums of generalized hypergeometric series. \[In: p\] pAdic Functional Analysis (Nijmegen, 1996). Lecture Notes in Pure and Applied Mathematics, vol. 192, pp. 223-236. Dekker, New York (1997) · Zbl 0895.11051
[16] Wolstenholme, J.: On certain properties of prime numbers. Q. J. Appl. Math. 5, 35-39 (1862)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.