×

Multiple orthogonal polynomials, \(d\)-orthogonal polynomials, production matrices, and branched continued fractions. (English) Zbl 1536.42027

Summary: I analyze an unexpected connection between multiple orthogonal polynomials, \(d\)-orthogonal polynomials, production matrices and branched continued fractions. This work can be viewed as a partial extension of Viennot’s combinatorial theory of orthogonal polynomials to the case where the production matrix is lower-Hessenberg but is not necessarily tridiagonal.

MSC:

42C05 Orthogonal functions and polynomials, general theory of nontrigonometric harmonic analysis
05A15 Exact enumeration problems, generating functions
05A19 Combinatorial identities, bijective combinatorics
15A24 Matrix equations and identities
15A99 Basic linear algebra
15B99 Special matrices
30B70 Continued fractions; complex-analytic aspects
30E05 Moment problems and interpolation problems in the complex plane
33C45 Orthogonal polynomials and functions of hypergeometric type (Jacobi, Laguerre, Hermite, Askey scheme, etc.)
41A21 Padé approximation

Software:

OEIS

References:

[1] Aheizer, N. I., Some questions in the theory of moments, Translations of Mathematical Monographs, Vol. 2, v+265 pp., 1962, American Mathematical Society, Providence, RI · Zbl 0117.32702
[2] Aigner, M., Algebraic combinatorics and computer science. Catalan and other numbers: a recurrent theme, 347-390, 2001, Springer Italia, Milan · Zbl 0971.05002
[3] Akhiezer, N. I., The classical moment problem and some related questions in analysis, x+253 pp., 1965, Hafner Publishing Co., New York · Zbl 1458.90002
[4] Albenque, Marie, 24th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2012). Constellations and multicontinued fractions: application to Eulerian triangulations, Discrete Math. Theor. Comput. Sci. Proc., AR, 805-816, 2012, Assoc. Discrete Math. Theor. Comput. Sci., Nancy · Zbl 1412.05012
[5] Aptekarev, A. I., Multiple orthogonal polynomials, J. Comput. Appl. Math.. Proceedings of the VIIIth Symposium on Orthogonal Polynomials and Their Applications (Seville, 1997), 423-447, 1998 · Zbl 0958.42015 · doi:10.1016/S0377-0427(98)00175-7
[6] Aptekarev, A. I., On the limit behavior of recurrence coefficients for multiple orthogonal polynomials, J. Approx. Theory, 346-370, 2006 · Zbl 1140.42011 · doi:10.1016/j.jat.2005.09.011
[7] Aval, Jean-Christophe, Multivariate Fuss-Catalan numbers, Discrete Math., 4660-4669, 2008 · Zbl 1152.05005 · doi:10.1016/j.disc.2007.08.100
[8] P. Barry, Riordan Arrays: A Primer (Logic Press, County Kildare, Ireland, 2016).
[9] Ben Cheikh, Youss\`ef, On two-orthogonal polynomials related to the Bateman’s \(J_n^{u,v}\)-function, Methods Appl. Anal., 641-662, 2000 · Zbl 1009.33014 · doi:10.4310/MAA.2000.v7.n4.a3
[10] Bodnar, D. I., Branched continued fractions (30th anniversary of the first publication), J. Math. Sci. (New York). Mat. Metodi Fiz.-Mekh. Polya, 9-19, 1996 · Zbl 0891.01029 · doi:10.1007/BF02433965
[11] Bodnar, D. I., Development of the theory of branched continued fractions in 1996-2016, J. Math. Sci. (N.Y.), 481-494, 2018 · Zbl 1399.40008 · doi:10.1007/s10958-018-3828-7
[12] Cameron, Naiomi T., Returns and hills on generalized Dyck paths, J. Integer Seq., Article 16.6.1, 28 pp., 2016 · Zbl 1339.05015 · doi:10.9734/bjmcs/2016/30398
[13] Cheon, Gi-Sang, Representing polynomials as characteristic polynomials via the Stieltjes transform, Linear Algebra Appl., 184-196, 2015 · Zbl 1314.05009 · doi:10.1016/j.laa.2015.03.013
[14] Chihara, T. S., An introduction to orthogonal polynomials, Mathematics and its Applications, Vol. 13, xii+249 pp., 1978, Gordon and Breach Science Publishers, New York-London-Paris · Zbl 0389.33008
[15] Corteel, Sylvie, Recent trends in combinatorics. Moments of orthogonal polynomials and combinatorics, IMA Vol. Math. Appl., 545-578, 2016, Springer, [Cham] · Zbl 1356.33006 · doi:10.1007/978-3-319-24298-9\_22
[16] Costabile, Francesco A., Recurrence relations and determinant forms for general polynomial sequences. Application to Genocchi polynomials, Integral Transforms Spec. Funct., 112-127, 2019 · Zbl 1433.11007 · doi:10.1080/10652469.2018.1537272
[17] Coussement, Els, Some properties of multiple orthogonal polynomials associated with Macdonald functions, J. Comput. Appl. Math.. Proceedings of the Fifth International Symposium on Orthogonal Polynomials, Special Functions and their Applications (Patras, 1999), 253-261, 2001 · Zbl 0984.33004 · doi:10.1016/S0377-0427(00)00648-8
[18] Coussement, Els, Multiple orthogonal polynomials associated with the modified Bessel functions of the first kind, Constr. Approx., 237-263, 2003 · Zbl 1025.33004 · doi:10.1007/s00365-002-0499-9
[19] Coussement, Jonathan, Gaussian quadrature for multiple orthogonal polynomials, J. Comput. Appl. Math., 131-145, 2005 · Zbl 1061.41021 · doi:10.1016/j.cam.2004.04.016
[20] Cuyt, Annie, Handbook of continued fractions for special functions, xvi+431 pp., 2008, Springer, New York · Zbl 1150.30003
[21] B. Deb, A. Dyachenko, M. P\'etr\'eolle and A. D. Sokal, Lattice paths and branched continued fractions, III: Generalizations of the Laguerre, rook and Lah polynomials, 2312.11081 [math.CO].
[22] de Bruin, M. G., Convergence of generalized \(C\)-fractions, J. Approx. Theory, 177-207, 1978 · Zbl 0405.41007 · doi:10.1016/0021-9045(78)90023-0
[23] Deutsch, Emeric, Production matrices, Adv. in Appl. Math., 101-122, 2005 · Zbl 1064.05012 · doi:10.1016/j.aam.2004.05.002
[24] Deutsch, Emeric, Production matrices and Riordan arrays, Ann. Comb., 65-85, 2009 · Zbl 1229.05015 · doi:10.1007/s00026-009-0013-1
[25] Di Francesco, Philippe, \(Q\)-systems, heaps, paths and cluster positivity, Comm. Math. Phys., 727-802, 2010 · Zbl 1194.05165 · doi:10.1007/s00220-009-0947-5
[26] Douak, Khalfa, Une caract\'{e}risation des polyn\^omes \(d\)-orthogonaux “classiques”, J. Approx. Theory, 177-204, 1995 · Zbl 0849.33004 · doi:10.1006/jath.1995.1074
[27] Drake, Daniel Allen, Towards a combinatorial theory of multiple orthogonal polynomials, 88 pp., 2006, ProQuest LLC, Ann Arbor, MI
[28] Drake, Dan, Higher-order matching polynomials and \(d\)-orthogonality, Adv. in Appl. Math., 226-246, 2011 · Zbl 1227.05256 · doi:10.1016/j.aam.2009.12.008
[29] Dumont, Dominique, Further triangles of Seidel-Arnold type and continued fractions related to Euler and Springer numbers, Adv. in Appl. Math., 275-296, 1995 · Zbl 0834.05004 · doi:10.1006/aama.1995.1014
[30] Dumont, Dominique, Further results on the Euler and Genocchi numbers, Aequationes Math., 31-42, 1994 · Zbl 0805.11024 · doi:10.1007/BF01838137
[31] Flajolet, P., Combinatorial aspects of continued fractions, Discrete Math., 125-161, 1980 · Zbl 0445.05014 · doi:10.1016/0012-365X(80)90050-3
[32] Franklin, Joel N., Matrix theory, xii+292 pp., 1968, Prentice-Hall, Inc., Englewood Cliffs, NJ · Zbl 0174.31501
[33] D. Gouyou-Beauchamps, Construction of \(q\)-equations for convex polyominoes, Paper presented at 10th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC ’98), available on-line at http://www-igm.univ-mlv.fr/ fpsac/FPSAC98/articles.html
[34] He, Tian-Xiao, Matrix characterizations of Riordan arrays, Linear Algebra Appl., 15-42, 2015 · Zbl 1303.05007 · doi:10.1016/j.laa.2014.09.008
[35] Horn, Roger A., Matrix analysis, xviii+643 pp., 2013, Cambridge University Press, Cambridge · Zbl 1267.15001
[36] Ismail, Mourad E. H., Classical and quantum orthogonal polynomials in one variable, Encyclopedia of Mathematics and its Applications, xviii+706 pp., 2005, Cambridge University Press, Cambridge · Zbl 1082.42016 · doi:10.1017/CBO9781107325982
[37] Ismail, Mourad E. H., Addition theorems via continued fractions, Trans. Amer. Math. Soc., 957-983, 2010 · Zbl 1194.33017 · doi:10.1090/S0002-9947-09-04868-5
[38] Jones, William B., Continued fractions, Encyclopedia of Mathematics and its Applications, xxix+428 pp., 1980, Addison-Wesley Publishing Co., Reading, MA · Zbl 0445.30003
[39] Kaliaguine, V., The operator moment problem, vector continued fractions and an explicit form of the Favard theorem for vector orthogonal polynomials, J. Comput. Appl. Math.. Proceedings of the International Conference on Orthogonality, Moment Problems and Continued Fractions (Delft, 1994), 181-193, 1995 · Zbl 0853.44006 · doi:10.1016/0377-0427(95)00109-3
[40] Kalyagin, V. A., Hermite-Pad\'{e} approximants and spectral analysis of nonsymmetric operators, Russian Acad. Sci. Sb. Math.. Mat. Sb., 79-100, 1994 · doi:10.1070/SM1995v082n01ABEH003558
[41] Kuijlaars, A. B. J., Non-intersecting squared Bessel paths and multiple orthogonal polynomials for modified Bessel weights, Comm. Math. Phys., 217-275, 2009 · Zbl 1188.60018 · doi:10.1007/s00220-008-0652-9
[42] Kuijlaars, Arno B. J., Recent trends in orthogonal polynomials and approximation theory. Multiple orthogonal polynomial ensembles, Contemp. Math., 155-176, 2010, Amer. Math. Soc., Providence, RI · Zbl 1218.60005 · doi:10.1090/conm/507/09958
[43] Kuijlaars, Arno B. J., Proceedings of the International Congress of Mathematicians. Volume III. Multiple orthogonal polynomials in random matrix theory, 1417-1432, 2010, Hindustan Book Agency, New Delhi · Zbl 1230.42034
[44] Kuijlaars, Arno B. J., Singular values of products of Ginibre random matrices, multiple orthogonal polynomials and hard edge scaling limits, Comm. Math. Phys., 759-781, 2014 · Zbl 1303.15046 · doi:10.1007/s00220-014-2064-3
[45] H\'elder Lima, private communication (8 May 2021).
[46] Lima, H\'{e}lder, Multiple orthogonal polynomials associated with branched continued fractions for ratios of hypergeometric series, Adv. in Appl. Math., Paper No. 102505, 63 pp., 2023 · Zbl 1522.11075 · doi:10.1016/j.aam.2023.102505
[47] Lima, H\'{e}lder, Multiple orthogonal polynomials associated with confluent hypergeometric functions, J. Approx. Theory, 105484, 36 pp., 2020 · Zbl 1453.33006 · doi:10.1016/j.jat.2020.105484
[48] Lima, H\'{e}lder, Multiple orthogonal polynomials with respect to Gauss’ hypergeometric function, Stud. Appl. Math., 154-185, 2022 · Zbl 1532.33018 · doi:10.1111/sapm.12437
[49] Lorentzen, Lisa, Continued fractions with applications, Studies in Computational Mathematics, xvi+606 pp., 1992, North-Holland Publishing Co., Amsterdam · Zbl 0782.40001
[50] Maroni, Pascal, L’orthogonalit\'{e} et les r\'{e}currences de polyn\^omes d’ordre sup\'{e}rieur \`a deux, Ann. Fac. Sci. Toulouse Math. (5), 105-139, 1989 · Zbl 0707.42019
[51] Mart\'{\i }nez-Finkelshtein, Andrei, What is…a multiple orthogonal polynomial?, Notices Amer. Math. Soc., 1029-1031, 2016 · Zbl 1352.33002 · doi:10.1090/noti1430
[52] Nikishin, E. M., Rational approximations and orthogonality, Translations of Mathematical Monographs, viii+221 pp., 1991, American Mathematical Society, Providence, RI · Zbl 0733.41001 · doi:10.1090/mmono/092
[53] The On-Line Encyclopedia of Integer Sequences, published electronically at http://oeis.org, 2023.
[54] Perron, Oskar, Die Lehre von den Kettenbr\"{u}chen. Dritte, verbesserte und erweiterte Aufl. Bd. II. Analytisch-funktionentheoretische Kettenbr\"{u}che, vi+316 pp., 1957, B. G. Teubner Verlagsgesellschaft, Stuttgart · Zbl 0077.06602
[55] P\'{e}tr\'{e}olle, Mathias, Lattice paths and branched continued fractions II. Multivariate Lah polynomials and Lah symmetric functions, European J. Combin., Paper No. 103235, 36 pp., 2021 · Zbl 1458.05017 · doi:10.1016/j.ejc.2020.103235
[56] P\'{e}tr\'{e}olle, Mathias, Lattice Paths and Branched Continued Fractions: An Infinite Sequence of Generalizations of the Stieltjes-Rogers and Thron-Rogers Polynomials, with Coefficientwise Hankel-Total Positivity, Mem. Amer. Math. Soc., 2023 · Zbl 1528.05001 · doi:10.1090/memo/1450
[57] Prodinger, Helmut, Returns, hills, and \(t\)-ary trees, J. Integer Seq., Article 16.7.2, 8 pp., 2016 · Zbl 1348.05023
[58] Robert, Leonel, Finite sections method for Hessenberg matrices, J. Approx. Theory, 68-88, 2003 · Zbl 1053.47026 · doi:10.1016/S0021-9045(03)00067-4
[59] E. Roblet, Une interpr\'etation combinatoire des approximants de Pad\'e, Th\`ese de doctorat, Universit\'e Bordeaux I (1994). Reprinted as Publications du Laboratoire de Combinatoire et d’Informatique Math\'ematique (LACIM) #17, Universit\'e du Qu\'ebec \`a Montr\'eal (1994). Available on-line at http://lacim.uqam.ca/en/les-parutions/
[60] Schm\"{u}dgen, Konrad, The moment problem, Graduate Texts in Mathematics, xii+535 pp., 2017, Springer, Cham · Zbl 1383.44004
[61] Shapiro, Louis W., The Riordan group, Discrete Appl. Math., 229-239, 1991 · Zbl 0754.05010 · doi:10.1016/0166-218X(91)90088-E
[62] Shapiro, Louis, The Riordan group and applications, Springer Monographs in Mathematics, xxii+362 pp., [2022] ©2022, Springer, Cham · Zbl 1498.05002 · doi:10.1007/978-3-030-94151-2
[63] Shohat, J. A., The Problem of Moments, American Mathematical Society Mathematical Surveys, Vol. I, xiv+140 pp., 1943, American Mathematical Society, New York · Zbl 0063.06973
[64] Sokal, Alan D., Total positivity of some polynomial matrices that enumerate labeled trees and forests I: forests of rooted labeled trees, Monatsh. Math., 389-452, 2023 · Zbl 1507.05010 · doi:10.1007/s00605-022-01687-0
[65] A. D. Sokal, Coefficientwise total positivity (via continued fractions) for some Hankel matrices of combinatorial polynomials, in preparation.
[66] A. D. Sokal, \(LU, LDU\) and \(LDL^T\) factorizations for matrices over a commutative ring, in preparation.
[67] Sorokin, V. N., Hermite-Pad\'{e} approximants for Nikishin systems and the irrationality of \(\zeta (3)\), Russian Math. Surveys. Uspekhi Mat. Nauk, 167-168, 1994 · doi:10.1070/RM1994v049n02ABEH002229
[68] Sorokin, V. N., Cyclic graphs and Ap\'{e}ry’s theorem, Russian Math. Surveys. Uspekhi Mat. Nauk, 99-134, 2002 · Zbl 1047.11070 · doi:10.1070/RM2002v057n03ABEH000512
[69] Sprugnoli, Renzo, Riordan arrays and combinatorial sums, Discrete Math., 267-290, 1994 · Zbl 0814.05003 · doi:10.1016/0012-365X(92)00570-H
[70] Stieltjes, T.-J., Sur la r\'{e}duction en fraction continue d’une s\'{e}rie proc\'{e}dant suivant les puissances descendantes d’une variable, Ann. Fac. Sci. Toulouse Sci. Math. Sci. Phys., H1-H17, 1889 · JFM 21.0187.01
[71] Stieltjes, T.-J., Recherches sur les fractions continues, Ann. Fac. Sci. Toulouse Sci. Math. Sci. Phys., J1-J122, 1894
[72] Szeg\H{o}, G\'{a}bor, Orthogonal polynomials, American Mathematical Society Colloquium Publications, Vol. XXIII, xiii+432 pp., 1975, American Mathematical Society, Providence, RI · Zbl 0305.42011
[73] Van Assche, Walter, Pad\'{e} and Hermite-Pad\'{e} approximation and orthogonality, Surv. Approx. Theory, 61-91, 2006 · Zbl 1102.41017
[74] Van Assche, Walter, Hermite-Pad\'{e} rational approximation to irrational numbers, Comput. Methods Funct. Theory, 585-602, 2010 · Zbl 1239.11078 · doi:10.1007/BF03321782
[75] W. Van Assche, Multiple orthogonal polynomials, in Encyclopedia of Special Functions: The Askey-Bateman Project, volume III, edited by M.E.H. Ismail and W. Van Assche (Cambridge University Press, Cambridge, to appear).
[76] Van Assche, W., Multiple orthogonal polynomials associated with Macdonald functions, Integral Transform. Spec. Funct., 229-244, 2000 · Zbl 0959.42016 · doi:10.1080/10652460008819257
[77] J. Van Iseghem, Approximants de Pad\'e vectoriels, Th\`ese de doctorat, Universit\'e des Sciences et Techniques de Lille-Flandres-Artois, 1987.
[78] Varvak, Anna Leonidovna, Encoding properties of lattice paths, 60 pp., 2004, ProQuest LLC, Ann Arbor, MI
[79] Verde-Star, Luis, Polynomial sequences generated by infinite Hessenberg matrices, Spec. Matrices, 64-72, 2017 · Zbl 1360.15034 · doi:10.1515/spma-2017-0002
[80] G. Viennot, Une th\'eorie combinatoire des polyn\^omes orthogonaux g\'en\'eraux, Notes de conf\'erences donn\'ees \`a l’Universit\'e du Qu\'ebec \`a Montr\'eal, septembre-octobre 1983. Available on-line at http://www.xavierviennot.org/xavier/polynomes_orthogonaux.html
[81] Viennot, G\'{e}rard, Orthogonal polynomials and applications. A combinatorial theory for general orthogonal polynomials with extensions and applications, Lecture Notes in Math., 139-157, 1984, Springer, Berlin · Zbl 0588.05006 · doi:10.1007/BFb0076539
[82] Wall, H. S., Analytic Theory of Continued Fractions, xiii+433 pp., 1948, D. Van Nostrand Co., Inc., New York · Zbl 0035.03601
[83] Watson, G. N., A treatise on the theory of Bessel functions, Cambridge Mathematical Library, viii+804 pp., 1995, Cambridge University Press, Cambridge · Zbl 0849.33001
[84] Wilkinson, J. H., The algebraic eigenvalue problem, xviii+662 pp., 1965, Clarendon Press, Oxford · Zbl 0258.65037
[85] Yang, Sheng-liang, Recurrence relations for the Sheffer sequences, Linear Algebra Appl., 2986-2996, 2012 · Zbl 1251.05015 · doi:10.1016/j.laa.2012.07.015
[86] Zeng, Jiang, Lectures on orthogonal polynomials and special functions. Combinatorics of orthogonal polynomials and their moments, London Math. Soc. Lecture Note Ser., 280-334, 2021, Cambridge Univ. Press, Cambridge · Zbl 1471.42060
[87] Zhang, Lun, The asymptotic zero distribution of multiple orthogonal polynomials associated with Macdonald functions, J. Approx. Theory, 143-162, 2011 · Zbl 1259.33020 · doi:10.1016/j.jat.2010.08.003
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.