×

\(Q\)-systems, heaps, paths and cluster positivity. (English) Zbl 1194.05165

The \(A_r\) \(Q\)-system is a recursion relation satisfied by characters of special irreducible finite-dimensional modules of the Lie algebra \(A_r\). It is a discrete integrable dynamical system. The relations of the \(Q\)-system are mutations in a cluster algebra. The authors prove the positivity property of the corresponding cluster variables, by using the integrability property. The system can be mapped to several different types of statistical models: path models, heaps on graphs, or domino tilings. The choice of the initial conditions for the recursion relations determines the specific model. The authors construct an explicit solution of the \(Q\)-system as a function of any possible set of initial conditions.

MSC:

05E15 Combinatorial aspects of groups and algebras (MSC2010)
13F60 Cluster algebras
17B37 Quantum groups (quantized enveloping algebras) and related deformations
82C20 Dynamic lattice systems (kinetic Ising, etc.) and systems on graphs in time-dependent statistical mechanics
37A60 Dynamical aspects of statistical mechanics

References:

[1] Beals R., Sattinger D.H., Szmigielski J.: Continued fractions and integrable systems. J. Comput. Appl. Math. 153(1-2), 47–60 (2003) · Zbl 1021.37041 · doi:10.1016/S0377-0427(02)00607-6
[2] Caldero P., Reineke M.: On the quiver Grassmannian in the acyclic case. J. Pure Appl. Algebra 212(11), 2369–2380 (2008) · Zbl 1153.14032 · doi:10.1016/j.jpaa.2008.03.025
[3] Di Francesco P., Kedem R.: Proof of the combinatorial Kirillov-Reshetikhin conjecture. Int. Math. Res. Notices 2008, rnn006–57 (2008) · Zbl 1233.17010
[4] Di Francesco, P., Kedem, R.: Q-systems as cluster algebras II. http://arXiv.org/abs/0803.0362v2[math.RT] , 2008 · Zbl 1195.81077
[5] Di Francesco, P., Kedem, R.: Q-systems cluster algebras, paths and total positivity. http://arXiv.org/abs/0906.3421v2[math.CO] , 2009
[6] Di Francesco P., Kedem, R.: Positivity of the T-system cluster algebra, preprint · Zbl 1229.13019
[7] Di Francesco, P., Kedem, R.: In progress
[8] Fomin S., Zelevinsky A.: Total positivity: tests and parameterizations. Math. Intelligencer 22, 23–33 (2000) · Zbl 1052.15500 · doi:10.1007/BF03024444
[9] Fomin S., Zelevinsky A.: Cluster algebras I. J. Amer. Math. Soc. 15(2), 497–529 (2002) · Zbl 1021.16017 · doi:10.1090/S0894-0347-01-00385-X
[10] Fomin S., Zelevinsky A.: The Laurent phenomenon. Adv. in Appl. Math. 28(2), 119–144 (2002) · Zbl 1012.05012 · doi:10.1006/aama.2001.0770
[11] Gessel I.M., Viennot X.: Binomial determinants, paths and hook formulae. Adv. Math. 58, 300–321 (1985) · Zbl 0579.05004 · doi:10.1016/0001-8708(85)90121-5
[12] Henriquès A.: A periodicity theorem for the octahedron recurrence. J. Alg. Comb. 26(1), 1–26 (2007) · Zbl 1125.05106 · doi:10.1007/s10801-006-0045-0
[13] Johansson K.: Non-intersecting paths, random tilings and random matrices. Prob. Th. Rel. fields 123(2), 225–280 (2002) · Zbl 1008.60019 · doi:10.1007/s004400100187
[14] Kedem R.: Q-systems as cluster algebras. J. Phys. A: Math. Theor. 41, 194011 (2008) · Zbl 1141.81014 · doi:10.1088/1751-8113/41/19/194011
[15] Kirillov A.N., Reshetikhin N.Yu.: Representations of Yangians and multiplicity of occurrence of the irreducible components of the tensor product of representations of simple Lie algebras. J. Sov. Math. 52, 3156–3164 (1990) · Zbl 0900.16047 · doi:10.1007/BF02342935
[16] Kontsevich, M.: Private communication
[17] Knutson A., Tao T., Woodward C.: A positive proof of the Littlewood-Richardson rule using the octahedron recurrence. Electr. J. Combin. 11, RP 61 (2004) · Zbl 1053.05119
[18] Krattenthaler, C.: The theory of heaps and the Cartier-Foata monoid. Appendix to the electronic republication of Problèmes combinatoires de commutation et réarrangements, by P. Cartier and D. Foata, available at http://mathnet.preprints.org/EMIS/journals/SLC/books/cartfao.pdf
[19] Lindström B.: On the vector representations of induced matroids. Bull. London Math. Soc. 5, 85–90 (1973) · Zbl 0262.05018 · doi:10.1112/blms/5.1.85
[20] Postnikov, A.: Total positivity, Grassmannians, and networks. http://arXiv.org/abs/math/0609764v1[math.CO] , 2006
[21] Robbins D., Rumsey H.: Determinants and alternating sign matrices. Adv. in Math. 62, 169–184 (1986) · Zbl 0611.15008 · doi:10.1016/0001-8708(86)90099-X
[22] Speyer D.: Perfect matchings and the octahedron recurrence. J. Alg. Comb. 25(3), 309–348 (2007) · Zbl 1119.05092 · doi:10.1007/s10801-006-0039-y
[23] Stieltjes, T.J.: Recherches sur les fractions continues. In: Oeuvres complètes de Thomas Jan Stieltjes. Vol. II, No. LXXXI, Groningen: P. Nordhoff, 1918 pp. 402–566 (see in particular Eq. (1), p 402 and Eq. (7) p 427)
[24] Viennot, X.: Heaps of pieces I: Basic definitions and combinatorial lemmas. In: Combinatoire énumérative, eds Labelle, G., Leroux, P. Lecture Notes in Math. 1234, Berlin: Springer-Verlag, 1986, pp. 321–325
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.