×

Lattice paths and branched continued fractions. II: Multivariate Lah polynomials and Lah symmetric functions. (English) Zbl 1458.05017

Summary: We introduce the generic Lah polynomials \(L_{n,k}(\phi)\), which enumerate unordered forests of increasing ordered trees with a weight \(\phi_i\) for each vertex with \(i\) children. We show that, if the weight sequence \(\phi\) is Toeplitz-totally positive, then the triangular array of generic Lah polynomials is totally positive and the sequence of row-generating polynomials \(L_n(\phi,y)\) is coefficientwise Hankel-totally positive. Upon specialization we obtain results for the Lah symmetric functions and multivariate Lah polynomials of positive and negative type. The multivariate Lah polynomials of positive type are also given by a branched continued fraction. Our proofs use mainly the method of production matrices; the production matrix is obtained by a bijection from ordered forests of increasing ordered trees to labeled partial Łukasiewicz paths. We also give a second proof of the continued fraction using the Euler-Gauss recurrence method.
For Part I see [M. Pétréolle et al. “Lattice paths and branched continued fractions: an infinite sequence of generalizations of the Stieltjes-Rogers and Thron-Rogers polynomials, with coefficientwise Hankel-total positivity”, Preprint, arXiv:1807.03271].

MSC:

05A15 Exact enumeration problems, generating functions
05E05 Symmetric functions and generalizations
11A55 Continued fractions
15B05 Toeplitz, Cauchy, and related matrices
11B73 Bell and Stirling numbers

Software:

symfun; OEIS

References:

[1] The on-line encyclopedia of integer sequences, published electronically at http://oeis.org. · Zbl 1044.11108
[2] Aigner, M., Catalan-like numbers and determinants, J. Combin. Theory Ser. A, 87, 33-51 (1999) · Zbl 0929.05004
[3] Aval, J.-C., Multivariate Fuss-Catalan numbers, Discrete Math., 308, 4660-4669 (2008) · Zbl 1152.05005
[4] Barry, P., Riordan Arrays: A Primer (2016), Logic Press: Logic Press County Kildare, Ireland
[5] Bergeron, F.; Flajolet, P.; Salvy, B., Varieties of increasing trees, (Raoult, J.-C., CAAP ’92. CAAP ’92, Lecture Notes in Computer Science, vol. #581 (1992), Springer-Verlag: Springer-Verlag Berlin), 24-48
[6] Bergeron, F.; Labelle, G.; Leroux, P., Combinatorial Species and Tree-Like Structures (1998), Cambridge University Press: Cambridge University Press Cambridge-New York · Zbl 0888.05001
[7] Brumfiel, G. W., (Partially Ordered Rings and Semi-Algebraic Geometry. Partially Ordered Rings and Semi-Algebraic Geometry, London Mathematical Society Lecture Note Series, vol. #37 (1979), Cambridge University Press: Cambridge University Press Cambridge-New York) · Zbl 0415.13015
[8] Cameron, N. T.; McLeod, J. E., Returns and hills on generalized Dyck paths, J. Integer Seq., 19, Article 16.6.1 pp. (2016), 28 pp · Zbl 1339.05015
[9] Chen, X.; Liang, H.; Wang, Y., Total positivity of recursive matrices, Linear Algebra Appl., 471, 383-393 (2015) · Zbl 1307.05020
[10] Chen, X.; Liang, H.; Wang, Y., Total positivity of Riordan arrays, European J. Combin., 46, 68-74 (2015) · Zbl 1307.05010
[11] Chen, X.; Wang, Y., Notes on the total positivity of Riordan arrays, Linear Algebra Appl., 569, 156-161 (2019) · Zbl 1411.05030
[12] Comtet, L., Advanced Combinatorics: The Art of Finite and Infinite Expansions (1974), Reidel: Reidel Dordrecht-Boston, [French original: Analyse Combinatoire, tomes I et II, Presses Universitaires de France, Paris, 1970] · Zbl 0283.05001
[13] Deutsch, E.; Ferrari, L.; Rinaldi, S., Production matrices, Adv. Appl. Math., 34, 101-122 (2005) · Zbl 1064.05012
[14] Deutsch, E.; Ferrari, L.; Rinaldi, S., Production matrices and Riordan arrays, Ann. Comb., 13, 65-85 (2009) · Zbl 1229.05015
[15] Deutsch, E.; Shapiro, L., (Exponential Riordan Arrays. Exponential Riordan Arrays, Handwritten Lecture Notes (2004), Nankai University), available online at http://www.combinatorics.net/ppt2004/Louis
[16] Fallat, S. M.; Johnson, C. R., Totally Nonnegative Matrices (2011), Princeton University Press: Princeton University Press Princeton NJ · Zbl 1390.15001
[17] Flajolet, P., Combinatorial aspects of continued fractions, Discrete Math., 32, 125-161 (1980) · Zbl 0445.05014
[18] Fusy, E.; Guitter, E., Comparing two statistical ensembles of quadrangulations: A continued fraction approach, Ann. Inst. Henri Poincaré D, 4, 125-176 (2017) · Zbl 1365.05062
[19] Gantmacher, F. R.; Krein, M. G., Oscillation Matrices and Kernels and Small Vibrations of Mechanical Systems, 1950 (2002), AMS Chelsea Publishing: AMS Chelsea Publishing Providence RI, Based on the second Russian edition · Zbl 1002.74002
[20] Gantmakher, F.; Krein, M., Sur les matrices complètement non négatives et oscillatoires, Compos. Math., 4, 445-476 (1937) · Zbl 0017.00102
[21] A.L.L. Gao, M. Pétréolle, A.D. Sokal, A.L.B. Yang, B.-X. Zhu, Total positivity of a class of Riordan-like matrices, implying a class of non-triangular linear transforms that preserve Hankel-total positivity, in preparation.
[22] Gessel, I., A note on Stirling permutations (1978), unpublished manuscript, cited in [36]
[23] Gessel, I. M., Lagrange inversion, J. Combin. Theory Ser. A, 144, 212-249 (2016) · Zbl 1343.05021
[24] Gessel, I.; Stanley, R. P., Stirling polynomials, J. Combin. Theory Ser. A, 24, 24-33 (1978) · Zbl 0378.05006
[25] C. Greene, et al. A Mathematica package for manipulating symmetric functions, http://ww3.haverford.edu/math/cgreene/symfun.html.
[26] Janson, S.; Kuba, M.; Panholzer, A., Generalized Stirling permutations, families of increasing trees and urn models, J. Combin. Theory Ser. A, 118, 94-114 (2011) · Zbl 1230.05100
[27] Josuat-Vergès, M., A \(q\)-analog of Schläfli and Gould identities on Stirling numbers, Ramanujan J., 46, 483-507 (2018) · Zbl 1391.05050
[28] Karlin, S., Total Positivity (1968), Stanford University Press: Stanford University Press Stanford CA · Zbl 0219.47030
[29] M. Kuba, A.L. Varvak, On path diagrams and Stirling permutations, preprint, arXiv:0906.1672v2 [math.CO] at arXiv.org.
[30] Lam, T. Y., An introduction to real algebra, Rocky Mountain J. Math., 14, 767-814 (1984) · Zbl 0577.14016
[31] Liang, H.; Mu, L.; Wang, Y., Catalan-like numbers and Stieltjes moment sequences, Discrete Math., 339, 484-488 (2016) · Zbl 1327.05019
[32] Macdonald, I. G., Symmetric Functions and Hall Polynomials (1995), Clarendon Press: Clarendon Press Oxford · Zbl 0899.05068
[33] Marshall, M., (Positive Polynomials and Sums of Squares. Positive Polynomials and Sums of Squares, Mathematical Surveys and Monographs, vol. #146 (2008), American Mathematical Society: American Mathematical Society Providence RI) · Zbl 1169.13001
[34] Oste, R.; Van der Jeugt, J., Motzkin paths, Motzkin polynomials and recurrence relations, Electron. J. Combin., 22, 2 (2015), #P2.8 · Zbl 1310.05013
[35] Park, S.-K., Inverse descents of \(r\)-multipermutations, Discrete Math., 132, 215-229 (1994) · Zbl 0809.05001
[36] Park, S.-K., The \(r\)-multipermutations, J. Combin. Theory Ser. A, 67, 44-71 (1994) · Zbl 0804.05001
[37] Pétréolle, M.; Sokal, A. D.; Zhu, B.-X., Lattice paths and branched continued fractions: An infinite sequence of generalizations of the Stieltjes-Rogers and Thron-Rogers polynomials, with coefficientwise Hankel-total positivity (2018), preprint, arXiv:1807.03271 [math.CO] at arXiv.org
[38] Pinkus, A., Totally Positive Matrices (2010), Cambridge University Press: Cambridge University Press Cambridge · Zbl 1185.15028
[39] Prestel, A.; Delzell, C. N., Positive Polynomials: From Hilbert’s 17th Problem to Real Algebra (2001), Springer-Verlag: Springer-Verlag Berlin · Zbl 0987.13016
[40] Prodinger, H., Returns, hills, and \(t\)-ary trees, J. Integer Seq., 19, Article 16.7.2 pp. (2016), 8 pp · Zbl 1348.05023
[41] A.D. Sokal, Coefficientwise Total Positivity (via Continued Fractions) for Some Hankel Matrices of Combinatorial Polynomials, in preparation.
[42] Sokal, A. D., Coefficientwise Total Positivity (via Continued Fractions) for Some Hankel Matrices of Combinatorial Polynomials, Talk at the Séminaire de Combinatoire Philippe Flajolet (2014), Institut Henri Poincaré: Institut Henri Poincaré Paris, transparencies available at http://semflajolet.math.cnrs.fr/index.php/Main/2013-2014
[43] Stanley, R. P., Enumerative Combinatorics, Vol. 1 (1986), Wadsworth & Brooks/Cole: Wadsworth & Brooks/Cole Monterey, California, Reprinted by Cambridge University Press, 1999 · Zbl 0608.05001
[44] Stanley, R. P., Enumerative Combinatorics, Vol. 2 (1999), Cambridge University Press: Cambridge University Press Cambridge-New York · Zbl 0928.05001
[45] Stieltjes, T. J., Sur la réduction en fraction continue d’une série procédant selon les puissances descendantes d’une variable, Ann. Fac. Sci. Toulouse, 3, H1-H17 (1889) · JFM 21.0187.01
[46] Stieltjes, T. J., Recherches sur les fractions continues, Ann. Fac. Sci. Toulouse, 8, J1-J122 (1894), and 9, A1-A47 (1895). [Reprinted, together with an English translation, in T.J. Stieltjes, Œuvres Complètes/Collected Papers (Springer-Verlag, Berlin, 1993), II, pp. 401-566 and 609-745.] · JFM 25.0326.01
[47] Zhu, B.-X., Log-convexity and strong \(q\)-log-convexity for some triangular arrays, Adv. Appl. Math., 50, 595-606 (2013) · Zbl 1277.05014
[48] Zhu, B.-X., Some positivities in certain triangular arrays, Proc. Amer. Math. Soc., 142, 2943-2952 (2014) · Zbl 1305.05020
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.