×

The centralizer construction and Yangian-type algebras. (English) Zbl 1536.17021

This paper investigates a certain generalization of the centralizer construction [the author, Sov. Math., Dokl. 36, No. 3, 569–573 (1988; Zbl 0662.22016); translation from Dokl. Akad. Nauk SSSR 297, 1050–1054 (1987); J. Sov. Math. 47, No. 2, 2466–2473 (1989; Zbl 0691.17005); translation from Zap. Nauchn. Semin. Leningr. Otd. Mat. Inst. Steklova 164, 142–150 (1987); Adv. Sov. Math. 2, 1–66 (1991; Zbl 0739.22015)]. More specifically, for any integer \(L\ge 2\), consider the Lie algebras \[ \mathfrak{a}(N)=\mathfrak{gl}(N,\mathbb{C})^{\oplus L}\quad\text{and}\quad \mathfrak{b}(N)=\mathop{\textrm{diag}}(\mathfrak{gl}_d(N,\mathbb{C})), \] where \(\mathfrak{gl}_d(N,\mathbb{C})\cong \mathfrak{gl} (N-d,\mathbb{C})\) is the Lie subalgebra of \(\mathfrak{gl}(N,\mathbb{C})\) which consists of all matrices of the form \( \begin{pmatrix} 0&0\\ 0&X \end{pmatrix} \) such that \(X\) is a \((N-d)\times (N-d)\) complex matrix. Let \[ A_{d,L}(N)=U(\mathfrak{a}(N))^{\mathfrak{b}(N)} \quad\text{with }d=0,\ldots ,N \] be the centralizers of \(\mathfrak{b}(N)\) in the universal enveloping algebra \(U(\mathfrak{a}(N))\). The author studies the projective limit filtered algebras \[ A_{d,L}=\lim_{\leftarrow}(A_{d,L}(N),\pi_{N,N-1}),\quad N\to\infty, \] where \[ \pi_{N,N-1}\colon A_{d,L}(N)\to A_{d,L}(N-1) \quad\text{with }N>d \] are certain algebra morphisms. In particular, the algebra \(A_{0,L}\) obtained in the case \(d=0\) embeds into \(A_{d,L}\).
The main results of the manuscript are as follows. First, the author proves that, for all \(d\ge 1\) and \(L\ge 2\), the algebra \(A_{d,L}\) possesses a subalgebra \(Y_{d,L}\) such that the multiplication map \(A_{0,L}\otimes Y_{d,L}\to A_{d,L}\) is a vector space isomorphism. It is worth noting that the case \(L=1\) of this result is well-known (see the author, Zbl 0739.22015) and, in addition, that the corresponding algebras \(Y_{d,1}\) are exactly the Yangians \(Y_{d,1}=Y(\mathfrak{gl}(d,\mathbb{C}))\). On the other hand, the case \(L\ge 2\), studied in this paper, leads to a new family \(Y_{d,L}\) of Yangian-type algebras. Finally, the author shows that these algebras possess a presentation by countably many generators subject to quadratic-linear commutation relations. However, it is not known whether, as with the ordinary Yangians, they possess a RTT-type presentation as well.

MSC:

17B37 Quantum groups (quantized enveloping algebras) and related deformations
17B63 Poisson algebras
17B35 Universal enveloping (super)algebras

References:

[1] Alekseev, A.; Kawazumi, N.; Kuno, Y.; Naef, F., The Goldman-Turaev Lie bialgebra in genus zero and the Kashiwara-Vergne problem. Adv. Math., 1-53 (2018) · Zbl 1422.57053
[2] Bocklandt, R.; Le Bruyn, L., Necklace Lie algebras and noncommutative symplectic geometry. Math. Z., 1, 141-167 (2002) · Zbl 1113.16019
[3] Borodin, A.; Olshanski, G., Representations of the Infinite Symmetric Group (2017), Cambridge University Press
[4] Dixmier, J., Enveloping Algebras. Graduate Studies in Mathematics (1996), Amer. Math. Soc. · Zbl 0867.17001
[5] Etingof, P., Representation theory in complex rank, II. Adv. Math., 473-504 (2016) · Zbl 1403.20055
[6] Ginzburg, V., Non-commutative symplectic geometry, quiver varieties, and operads. Math. Res. Lett., 3, 377-400 (2001) · Zbl 1113.17306
[7] Ginzburg, V.; Schedler, T., Moyal quantization and stable homology of necklace Lie algebras. Mosc. Math. J., 3, 431-459 (2006) · Zbl 1125.17008
[8] Gould, M. D., Characteristic identities for semi-simple Lie algebras. J. Aust. Math. Soc. Ser. B, 257-283 (1985) · Zbl 0563.17009
[9] Hartshorne, R., Algebraic Geometry. Graduate Texts in Mathematics (1977), Springer · Zbl 0367.14001
[10] Horn, R. A.; Johnson, C. R., Matrix Analysis (1990), Cambridge University Press · Zbl 0704.15002
[11] Isaac, P. S.; Werry, J. K.; Gould, M. D., Characteristic identities for Lie (super)algebras. J. Phys. Conf. Ser., 1 (2015)
[12] Khoroshkin, S.; Ogievetsky, O., Diagonal reduction algebra and reflection equation. Isr. J. Math., 705-729 (2017) · Zbl 1428.17011
[13] Molev, A., Yangians and Classical Lie Algebras. Mathematical Surveys and Monographs (2007), Amer. Math. Soc. · Zbl 1141.17001
[14] Molev, A. I.; Nazarov, M. L.; Olshanskii, G. I., Yangians and classical Lie algebras. Russ. Math. Surv., 202-282 (1996) · Zbl 0876.17014
[15] Molev, A.; Olshanski, G., Centralizer construction for twisted Yangians. Sel. Math. New Ser., 269-317 (2000) · Zbl 1026.17021
[16] Nazarov, M., Yangian of the queer Lie superalgebra. Commun. Math. Phys., 195-223 (1999) · Zbl 0951.17006
[17] Nazarov, M., Double Yangian and the universal R-matrix. Jpn. J. Math., 169-221 (2020) · Zbl 1479.16033
[18] Nazarov, M.; Sergeev, A., Centralizer construction of the Yangian of the queer Lie superalgebra, 417-441 · Zbl 1165.17008
[19] Okounkov, A.; Olshanski, G., Shifted Schur functions. St. Petersburg Math. J.. Algebra Anal., 2, 73-146 (1997), translation from · Zbl 0894.05053
[20] Ol’shanskiĭ, G. I., Extension of the algebra \(U(\mathfrak{g})\) for infinite-dimensional classical Lie algebras \(\mathfrak{g} \), and the Yangians \(Y( \mathfrak{gl}(m))\). Dokl. Akad. Nauk SSSR. Sov. Math. Dokl., 3, 569-573 (1988), translation in · Zbl 0662.22016
[21] Ol’shanskiĭ, G. I., Yangians and universal enveloping algebras. Zap. Nauč. Semin. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI). J. Sov. Math., 2, 2466-2473 (1989), translation in · Zbl 0691.17005
[22] Ol’shanskiĭ, G. I., Representations of infinite-dimensional classical groups, limits of enveloping algebras, and Yangians, 1-66 · Zbl 0739.22015
[23] Ol’shanskiĭ, G. I., Twisted Yangians and infinite-dimensional classical Lie algebras, 104-119 · Zbl 0780.17025
[24] Olshanski, G.; Safonkin, N., Remarks on Yangian-type algebras and double Poisson brackets. Funct. Anal. Appl., 4 (2023)
[25] Olshanski, G.; Safonkin, N., Double Poisson brackets and involutive representation spaces · Zbl 07812615
[26] Perelomov, A. M.; Popov, V. S., Casimir operators for semisimple Lie groups. Math. USSR, Izv., 6, 1313-1335 (1968) · Zbl 0197.30404
[27] Pichereau, A.; Van de Weyer, G., Double Poisson cohomology of path algebras of quivers. J. Algebra, 2166-2208 (2008) · Zbl 1214.17009
[28] Procesi, C., The invariant theory of \(n \times n\) matrices. Adv. Math., 306-381 (1976) · Zbl 0331.15021
[29] Schedler, T., A Hopf algebra quantizing a necklace Lie algebra canonically associated to a quiver. Int. Math. Res. Not., Issue 12, 725-760 (2005) · Zbl 1079.16028
[30] Utiralova, A., Olshanski’s centralizer construction and Deligne tensor categories, Preprint
[31] Van den Bergh, M., Double Poisson algebras. Trans. Am. Math. Soc., 5711-5799 (2008) · Zbl 1157.53046
[32] Z̆elobenko, D. P., Compact Lie Groups and Their Representations. Translations of Mathematical Monographs (1973), Amer. Math. Soc. · Zbl 0272.22006
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.