×

Double Poisson brackets and involutive representation spaces. (English) Zbl 07812615

Summary: Let \(\mathbf k\) be an algebraically closed field of characteristic 0 and \(A\) be a finitely generated associative \(\mathbf k\)-algebra, in general noncommutative. One assigns to \(A\) a sequence of commutative \(\mathbf k\)-algebras \(\mathcal{O}(A,d), d=1,2,3,\ldots\), where \(\mathcal{O}(A,d)\) is the coordinate ring of the space \(\mathrm{Rep}(A,d)\) of \(d\)-dimensional representations of the algebra \(A\). A double Poisson bracket on \(A\) in the sense of Van den Bergh [Trans. Am. Math. Soc. 360, 5711–5799 (2008)] is a bilinear map \(\{\!\{-,-\}\!\}\) from \(A\times A\) to \(A^{\otimes 2}\), subject to certain conditions. Van den Bergh showed that any such bracket \(\{\!\{-,-\}\!\}\) induces Poisson structures on all algebras \(\mathcal{O}(A,d)\). We propose an analog of Van den Bergh’s construction, which produces Poisson structures on the coordinate rings of certain subspaces of the representation spaces \(\mathrm{Rep}(A,d)\). We call these subspaces the involutive representation spaces. They arise by imposing an additional symmetry condition on \(\mathrm{Rep}(A,d)\) – just as the classical groups from the series B, C, D are obtained from the general linear groups (series A) as fixed point sets of involutive automorphisms.

MSC:

17B63 Poisson algebras

References:

[1] Alekseev, A.; Kawazumi, N.; Kuno, Y.; Naef, F., The Goldman-Turaev Lie bialgebra in genus zero and the Kashiwara-Vergne problem, Adv. Math., 326, 1-53, (2018) · Zbl 1422.57053 · doi:10.1016/j.aim.2017.12.005
[2] Crawley-Boevey, W.; Etingof, P.; Ginzburg, V., Noncommutative geometry and quiver algebras, Adv. Math., 209, 1, 274-336, (2007) · Zbl 1111.53066 · doi:10.1016/j.aim.2006.05.004
[3] Fairon, M.; McCulloch, C., Around Van den Bergh’s double brackets for different bimodule structures, Commun. Algebra, 51, 4, 1673-1706, (2023) · Zbl 1529.16028 · doi:10.1080/00927872.2022.2140349
[4] Fairon, M., Morphisms of double (quasi-) Poisson algebras and action-angle duality of integrable systems, Annales Henri Lebesgue, 5, 179-262, (2022) · Zbl 1496.16045 · doi:10.5802/ahl.121
[5] Le Bruyn, L., Noncommutative Geometry and Cayley-Smooth Orders, (2008), Cambridge: Chapman and Hall/CRC, Cambridge · Zbl 1131.14006
[6] Molev, A.: Yangians and classical Lie algebras. Mathematical Surveys and Monographs 143. American Mathematical Society, Providence (2007)
[7] Molev, A.; Olshanski, G., Centralizer construction for twisted Yangians, Sel. Math., 6, 269-317, (2000) · Zbl 1026.17021 · doi:10.1007/PL00001390
[8] Odesskii, A.V., Rubtsov, V.N., Sokolov, V.V.: Double Poisson brackets on free associative algebras. In: Noncommutative Birational Geometry, Representations and Combinatorics. Contemp. Math., vol. 592, pp. 225-239. American Mathematical Society, Providence (2013) · Zbl 1321.17014
[9] Olshanskii, GI, Yangians and universal enveloping algebras, J. Soviet Math., 47, 2466-2473, (1989) · Zbl 0691.17005 · doi:10.1007/BF01840428
[10] Olshanskii, GI; Kirillov, AA, Representations of infinite-dimensional classical groups, limits of enveloping algebras, and Yangians, Topica in Representation Theory. Advances in Soviet Mathematics, 1-66, (1991), Providence: American Mathematical Society, Providence · Zbl 0739.22015 · doi:10.1090/advsov/002/01
[11] Olshanskii, G.I.: Twisted Yangians and infinite-dimensional Lie algebras. In: Kulish, P.P. (ed.) Quantum Groups. Proceedings of Workshops held in the Euler Mathematical Institute, Leningrad, Fall 1990. Lecture Notes in Math. 1510, pp. 104-119. Springer, Berlin (1992) · Zbl 0780.17025
[12] Olshanski, G., The centralizer construction and Yangian-type algebras, J. Geom. Phys., 196, (2024) · Zbl 1536.17021 · doi:10.1016/j.geomphys.2023.105063
[13] Pichereau, A.; Van de Weyer, G., Double Poisson cohomology of path algebras of quivers, J. Algebra, 319, 5, 2166-2208, (2008) · Zbl 1214.17009 · doi:10.1016/j.jalgebra.2007.09.021
[14] Rubtsov, V., Suchánek, R.: Lectures on Poisson algebras. In: Groups, Invariants, Integrals, and Mathematical Physics. The Wisła 20-21 Winter School and Workshop, pp. 41-116. Birkhäuser, Basel (2023) · Zbl 1515.20019
[15] Schedler, T.: Poisson algebras and Yang-Baxter equations. In: Advances in Quantum Computation. Contemp. Math. 482, pp. 91-106. American Mathematical Society, Providence (2009) · Zbl 1171.81396
[16] Van den Bergh, M., Double Poisson algebras, Trans. Am. Math. Soc., 360, 5711-5799, (2008) · Zbl 1157.53046 · doi:10.1090/S0002-9947-08-04518-2
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.