×

The Goldman-Turaev Lie bialgebra in genus zero and the Kashiwara-Vergne problem. (English) Zbl 1422.57053

Summary: In this paper, we describe a surprising link between the theory of the Goldman-Turaev Lie bialgebra on surfaces of genus zero and the Kashiwara-Vergne (KV) problem in Lie theory. Let \(\Sigma\) be an oriented 2-dimensional manifold with non-empty boundary and \(\mathbb{K}\) a field of characteristic zero. The Goldman-Turaev Lie bialgebra is defined by the Goldman bracket \(\{-, - \}\) and Turaev cobracket \(\delta\) on the \(\mathbb{K}\)-span of homotopy classes of free loops on \(\Sigma\).
Applying an expansion \(\theta : \mathbb{K} \pi \rightarrow \mathbb{K} \langle x_1, \ldots, x_n \rangle\) yields an algebraic description of the operations \(\{-, - \}\) and \(\delta\) in terms of non-commutative variables \(x_1, \ldots, x_n\). If \(\Sigma\) is a surface of genus \(g = 0\) the lowest degree parts \(\{-, - \}_{- 1}\) and \(\delta_{- 1}\) are canonically defined (and independent of \(\theta\)). They define a Lie bialgebra structure on the space of cyclic words which was introduced and studied by T. Schedler [Int. Math. Res. Not. 2005, No. 12, 725–760 (2005; Zbl 1079.16028)]. It was conjectured by the second and the third authors that one can define an expansion \(\theta\) such that \(\{-, - \} = \{-, - \}_{- 1}\) and \(\delta = \delta_{- 1}\). The main result of this paper states that for surfaces of genus zero constructing such an expansion is essentially equivalent to the KV problem. In [Quantum Topol. 9, No. 1, 39–117 (2018; Zbl 1393.57016)], G. Massuyeau constructed such expansions using the Kontsevich integral. In order to prove this result, we show that the Turaev cobracket \(\delta\) can be constructed in terms of the double bracket (upgrading the Goldman bracket) and the non-commutative divergence cocycle which plays the central role in the KV theory. Among other things, this observation gives a new topological interpretation of the KV problem and allows to extend it to surfaces with arbitrary number of boundary components (and of arbitrary genus, see [A. Alekseev et al., C. R., Math., Acad. Sci. Paris 355, No. 2, 123–127 (2017; Zbl 1420.57052)]).

MSC:

57N05 Topology of the Euclidean \(2\)-space, \(2\)-manifolds (MSC2010)
17B62 Lie bialgebras; Lie coalgebras

References:

[1] Alekseev, A.; Enriquez, B.; Torossian, C., Drinfeld associators, braid groups and explicit solutions of the Kashiwara-Vergne equations, Publ. Math. Inst. Hautes Études Sci., 112, 143-189 (2010) · Zbl 1238.17008
[2] Alekseev, A.; Kawazumi, N.; Kuno, Y.; Naef, F., Higher genus Kashiwara-Vergne problems and the Goldman-Turaev Lie bialgebra, C. R. Acad. Sci. Paris, Ser. I, 355, 123-127 (2017) · Zbl 1420.57052
[3] A. Alekseev, N. Kawazumi, Y. Kuno, F. Naef, in preparation.; A. Alekseev, N. Kawazumi, Y. Kuno, F. Naef, in preparation.
[4] Alekseev, A.; Kosmann-Schwarzbach, Y.; Meinrenken, E., Quasi-Poisson manifolds, Canad. J. Math., 54, 1, 3-29 (2002) · Zbl 1006.53072
[5] Alekseev, A.; Meinrenken, E., On the Kashiwara-Vergne conjecture, Invent. Math., 164, 615-634 (2006) · Zbl 1096.22007
[6] Alekseev, A.; Torossian, C., The Kashiwara-Vergne conjecture and Drinfeld’s associators, Ann. of Math., 175, 415-463 (2012) · Zbl 1243.22009
[7] Atiyah, M. F.; Bott, R., The Yang-Mills equations over Riemann surfaces, Philos. Trans. R. Soc. Lond. Ser. A, 308, 1505, 523-615 (1983) · Zbl 0509.14014
[8] Bar-Natan, D.; Dancso, Z., Homomorphic expansions for knotted trivalent graphs, J. Knot Theory Ramifications, 22, 1, Article 1250137 pp. (2013) · Zbl 1270.57038
[9] Bocklandt, R.; Le Bruyn, L., Necklace Lie algebras and noncommutative symplectic geometry, Math. Z., 240, 141-167 (2002) · Zbl 1113.16019
[10] Chas, M., Combinatorial Lie bialgebras of curves on surfaces, Topology, 43, 543-568 (2004) · Zbl 1050.57014
[11] Chas, M.; Sullivan, D., String topology · Zbl 1185.55013
[12] Crawley-Boevey, W.; Etingof, P.; Ginzburg, V., Noncommutative geometry and quiver algebras, Adv. Math., 209, 274-336 (2007) · Zbl 1111.53066
[13] Enriquez, B., On the Drinfeld generators of \(grt_1(k)\) and Γ-functions for associators, Math. Res. Lett., 3, 231-243 (2006) · Zbl 1109.17004
[14] Ginzburg, V., Non-commutative symplectic geometry, quiver varieties, and operads, Math. Res. Lett., 8, 377-400 (2001) · Zbl 1113.17306
[15] Goldman, W., Invariant functions on Lie groups and Hamiltonian flows of surface group representations, Invent. Math., 85, 263-302 (1986) · Zbl 0619.58021
[16] Habegger, N.; Masbaum, G., The Kontsevich integral and Milnor’s invariants, Topology, 39, 1253-1289 (2000) · Zbl 0964.57011
[17] Kashiwara, M.; Vergne, M., The Campbell-Hausdorff formula and invariant hyperfunctions, Invent. Math., 47, 249-272 (1978) · Zbl 0404.22012
[18] Kawazumi, N., A regular homotopy version of the Goldman-Turaev Lie bialgebra, the Enomoto-Satoh traces and the divergence cocycle in the Kashiwara-Vergne problem, RIMS Kôkyûroku, 1936, 137-141 (2015)
[19] Kawazumi, N., A tensorial description of the Turaev cobracket on genus 0 compact surfaces, RIMS Kôkyûroku Bessatsu, B66, Article 001-013 (2017) · Zbl 1398.57030
[20] Kawazumi, N.; Kuno, Y., The logarithms of Dehn twists, Quantum Topol., 5, 347-423 (2014) · Zbl 1361.57027
[21] Kawazumi, N.; Kuno, Y., Intersections of curves on surfaces and their applications to mapping class groups, Ann. Inst. Fourier, 65, 2711-2762 (2015) · Zbl 1370.57009
[22] Kawazumi, N.; Kuno, Y., The Goldman-Turaev Lie bialgebra and the Johnson homomorphisms, (Papadopoulos, A., Handbook of Teichmuller Theory, vol. V (2016), EMS Publishing House: EMS Publishing House Zurich), 97-165 · Zbl 1344.30038
[23] Massuyeau, G., Infinitesimal Morita homomorphisms and the tree-level of the LMO invariant, Bull. Soc. Math. France, 140, 101-161 (2012) · Zbl 1248.57009
[24] Massuyeau, G., Formal descriptions of Turaev’s loop operations, Quantum Topol. (2017), in press · Zbl 1393.57016
[25] Massuyeau, G.; Turaev, V. G., Fox pairings and generalized Dehn twists, Ann. Inst. Fourier, 63, 2403-2456 (2013) · Zbl 1297.57005
[26] Massuyeau, G.; Turaev, V. G., Quasi-Poisson structures on representation spaces of surfaces, Int. Math. Res. Not. IMRN, 2014, 1-64 (2014) · Zbl 1298.53085
[27] G. Massuyeau, V.G. Turaev, Tensorial description of double brackets on surface groups and related operations, draft, 2012.; G. Massuyeau, V.G. Turaev, Tensorial description of double brackets on surface groups and related operations, draft, 2012.
[28] Merkulov, S.; Willwacher, T., Props of ribbon graphs, involutive Lie bilagebras and moduli spaces of curves
[29] Naef, F., Poisson brackets in Kontsevich’s “Lie world” · Zbl 1495.17033
[30] Papakyriakopoulos, C. D., Planar regular coverings of orientable closed surfaces, (Ann. of Math. Stud., vol. 84 (1975), Princeton University Press: Princeton University Press Princeton), 261-292 · Zbl 0325.55002
[31] Schedler, T., A Hopf algebra quantizing a necklace Lie algebra canonically associated to a quiver, Int. Math. Res. Not. IMRN, 12, 725-760 (2005) · Zbl 1079.16028
[32] Severa, P., Left and right centers in quasi-Poisson geometry of moduli spaces, Adv. Math., 279, 263-290 (2015) · Zbl 1319.53096
[33] Turaev, V. G., Intersections of loops in two-dimensional manifolds, Mat. Sb.. Mat. Sb., Math. USSR, Sb., 35, 229-250 (1979), English translation · Zbl 0422.57005
[34] Turaev, V. G., Skein quantization of Poisson algebras of loops on surfaces, Ann. Sci. École Norm. Sup., 24, 635-704 (1991) · Zbl 0758.57011
[35] van den Bergh, M., Double Poisson algebras, Trans. Amer. Math. Soc., 360, 5711-5799 (2008) · Zbl 1157.53046
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.