×

fp-projective periodicity. (English) Zbl 1535.16006

Periodicity, for a module \(M\) over a ring \(R\), refers to the existence of a short exact sequence \(0 \rightarrow M \rightarrow A \rightarrow M \rightarrow 0\). If \(A\) belongs to a particular class \(\mathbf A\) of \(R\)-modules, then \(M\) is said to be \(\mathbf A\)-periodic. It is known that every flat \(\mathbf{Proj}\)-periodic module is projective [D. J. Benson and K. R. Goodearl, Pac. J. Math. 196, No. 1, 45–67 (2000; Zbl 1073.20500)], every fp-injective \(\mathbf{Inj}\)-periodic module is injective [J. Št’ovíček, “On purity and applications to coderived and singularity categories”, Preprint, arXiv:1412.1615], and every \(\mathbf{Cot}\)-periodic module is cotorsion [S. Bazzoni et al., Algebr. Represent. Theory 23, No. 5, 1861–1883 (2020; Zbl 1455.16006)], where \(\mathbf{Proj}\), \(\mathbf{Inj}\), and \(\mathbf{Cot}\) are the classes of projective, injective, and cotorsion \(R\)-modules, respectively. If a pure exact sequence \(0 \rightarrow M \rightarrow A \rightarrow M \rightarrow 0\) with \(A \in \mathbf{A}\) exists, \(M\) is said to be pure-\(\mathbf A\)-periodic. It is also known that every pure-\(\mathbf{PProj}\)-periodic module is pure-projective [D. Simson, Pac. J. Math. 207, No. 1, 235–256 (2002; Zbl 1056.16004)], and every pure-\(\mathbf{PInj}\)-periodic module is pure-injective [Št’ovíček, loc. cit.], where \(\mathbf{PProj}\) and \(\mathbf{PInj}\) are the respective classes of pure-projective and pure-injective \(R\)-modules.
One of the main results of the present paper is that every \(\mathbf{FpProj}\)-periodic \(R\)-module is weakly fp-projective in a suitable sense, where \(\mathbf{FpProj}\) is the class of fp-projective \(R\)-modules. This extends a result of J. Šaroch and J. Št’ovíček [Sel. Math., New Ser. 26, No. 2, Paper No. 23, 40 p. (2020; Zbl 1444.16010)], who proved that when \(R\) is coherent, every \(\mathbf{FpProj}\)-periodic \(R\)-module is fp-projective. (The weakly fp-projective right \(R\)-modules are fp-projective if and only if \(R\) is right coherent.)
Periodicity for flat \(\mathbf{Proj}\)-periodic modules was rediscovered and strengthened by A. Neeman [Invent. Math. 174, No. 2, 255–308 (2008; Zbl 1184.18008)], who proved that every acyclic complex of projective \(R\)-modules whose modules of cocycles are flat must be contractible, and that any morphism from a complex of projective \(R\)-modules to an acyclic complex of flat \(R\)-modules whose modules of cocycles are flat must be homotopic to zero. This type of homological periodicity is also obtained here for fp-projectivity: For any acyclic complex of fp-projective \(R\)-modules, the modules of cocycles must be weakly fp-projective; and any morphism from a complex of fp-projective \(R\)-modules to an acyclic complex of fp-injective \(R\)-modules whose modules of cocycles are fp-injective must be homotopic to zero.
All the mentioned main results are proved not just for the category of modules over a ring but for any locally finitely presentable abelian category.
As an application of their periodicity results, the authors prove that if \(\mathbf K\) is a locally coherent abelian category and \(\mathbf A\) the full subcategory of fp-projective objects in \(\mathbf K\), endowed with the inherited exact category structure, then the inclusion \(\mathbf{A} \rightarrow \mathbf{K}\) induces an equivalence of the unbounded derived categories \(D({\mathbf A})\) and \(D({\mathbf K})\). The paper concludes with a number of counterexamples to a potential strengthening of Simson’s periodicity theorem. Namely, over various rings \(R\), there exist \(\mathbf{PProj}\)-periodic \(R\)-modules which are not pure-projective.

MSC:

16D80 Other classes of modules and ideals in associative algebras
16E05 Syzygies, resolutions, complexes in associative algebras
16E35 Derived categories and associative algebras
18E10 Abelian categories, Grothendieck categories

References:

[1] Adámek, J.; Rosický, J., Locally Presentable and Accessible Categories, London Math. Society Lecture Note Series, vol. 189 (1994), Cambridge University Press · Zbl 0795.18007
[2] Bazzoni, S.; Cortés-Izurdiaga, M.; Estrada, S., Periodic modules and acyclic complexes, Algebr. Represent. Theory, 23, 5, 1861-1883 (2020) · Zbl 1455.16006
[3] Bazzoni, S.; Herbera, D., Cotorsion pairs generated by modules of bounded projective dimension, Isr. J. Math., 174, 119-160 (2009) · Zbl 1232.16009
[4] Beligiannis, A., On algebras of finite Cohen-Macaulay type, Adv. Math., 226, 2, 1973-2019 (2011) · Zbl 1239.16016
[5] Benson, D. J.; Goodearl, K. R., Periodic flat modules, and flat modules for finite groups, Pac. J. Math., 196, 1, 45-67 (2000) · Zbl 1073.20500
[6] Buchweitz, R.-O.; Greuel, G.-M.; Schreyer, F.-O., Cohen-Macaulay modules on hypersurface singularities II, Invent. Math., 88, 1, 165-182 (1987) · Zbl 0617.14034
[7] Christensen, L. W.; Holm, H., The direct limit closure of perfect complexes, J. Pure Appl. Algebra, 219, 3, 449-463 (2015) · Zbl 1357.16015
[8] Crawley-Boevey, W., Locally finitely presented additive categories, Commun. Algebra, 22, 5, 1641-1674 (1994) · Zbl 0798.18006
[9] Emmanouil, I.; Kaperonis, I., On K-absolutely pure complexes, available from · Zbl 1533.18010
[10] Estrada, S.; Fu, X.; Iacob, A., Totally acyclic complexes, J. Algebra, 470, 300-319 (2017) · Zbl 1405.16005
[11] Fuchs, L.; Salce, L., Modules over Non-Noetherian Domains, Mathematical Surveys and Monographs, vol. 84 (2001), American Math. Society: American Math. Society Providence · Zbl 0973.13001
[12] Gillespie, J., The flat model structure on \(\mathbf{Ch}(R)\), Trans. Am. Math. Soc., 356, 8, 3369-3390 (2004) · Zbl 1056.55011
[13] Gillespie, J., The homotopy category of acyclic complexes of pure-projective modules, Forum Math., 35, 2, 507-521 (2023) · Zbl 1518.18019
[14] Glaz, S., Commutative Coherent Rings, Lecture Notes in Math., vol. 1371 (1989), Springer: Springer Berlin · Zbl 0745.13004
[15] Göbel, R.; Trlifaj, J., Approximations and Endomorphism Algebras of Modules, De Gruyter Expositions in Mathematics, vol. 41 (2012), De Gruyter: De Gruyter Berlin-Boston · Zbl 1292.16001
[16] Hungerford, T. W., On the structure of principal ideal rings, Pac. J. Math., 25, 543-547 (1968) · Zbl 0157.08503
[17] Jensen, C. U.; Lenzing, H., Model-Theoretic Algebra (with Particular Emphasis on Fields, Rings, Modules), Algebra, Logic, and Applications, vol. 2 (1989), Gordon and Breach Science Publishers: Gordon and Breach Science Publishers New York · Zbl 0728.03026
[18] Kashiwara, M.; Schapira, P., Categories and Sheaves, Grundlehren der mathematischen Wissenschaften, vol. 332 (2006), Springer · Zbl 1118.18001
[19] Krause, H., Functors on locally finitely presented additive categories, Colloq. Math., 75, 1, 105-132 (1998) · Zbl 0893.18006
[20] Mao, L.; Ding, N., Notes on FP-projective modules and FP-injective modules, (Chen, J.; Ding, N.; Marubayashi, H., Advances in Ring Theory, Proceedings of the 4th China-Japan-Korea International Conference. Advances in Ring Theory, Proceedings of the 4th China-Japan-Korea International Conference, June 2004 (2005), World Scientific), 151-166 · Zbl 1116.16304
[21] Neeman, A., The homotopy category of flat modules, and Grothendieck duality, Invent. Math., 174, 2, 255-308 (2008) · Zbl 1184.18008
[22] Positselski, L., Two Kinds of Derived Categories, Koszul Duality, and Comodule-Contramodule Correspondence, Memoirs of the American Math. Society, vol. 212(996) (2011), vi+133 pp. · Zbl 1275.18002
[23] Positselski, L., Coherent rings, fp-injective modules, dualizing complexes, and covariant Serre-Grothendieck duality, Sel. Math. New Ser., 23, 2, 1279-1307 (2017) · Zbl 1394.16005
[24] Positselski, L., Differential graded Koszul duality: an introductory survey, Bull. Lond. Math. Soc., 55, 4, 1551-1640 (2023) · Zbl 1537.16010
[25] Positselski, L.; Rosický, J., Covers, envelopes, and cotorsion theories in locally presentable abelian categories and contramodule categories, J. Algebra, 483, 83-128 (2017) · Zbl 1402.18011
[26] Positselski, L., Abelian right perpendicular subcategories in module categories, Electronic preprint
[27] Positselski, L.; Št’ovíček, J., Topologically semisimple and topologically perfect topological rings, Publ. Mat., 66, 2, 457-540 (2022) · Zbl 1504.16077
[28] Positselski, L.; Št’ovíček, J., Derived, coderived, and contraderived categories of locally presentable abelian categories, J. Pure Appl. Algebra, 226, 4, Article 106883 pp. (2022) · Zbl 1482.18007
[29] Positselski, L.; Št’ovíček, J., Coderived and contraderived categories of locally presentable abelian DG-categories, Electronic preprint · Zbl 1482.18007
[30] Roos, J.-E., Locally Noetherian categories and generalized strictly linearly compact rings. Applications, (Category Theory, Homology Theory, and Their Applications, II (1969), Springer: Springer Berlin), 197-277 · Zbl 0211.32602
[31] Saorín, M.; Št’ovíček, J., On exact categories and applications to triangulated adjoints and model structures, Adv. Math., 228, 2, 968-1007 (2011) · Zbl 1235.18010
[32] Šaroch, J.; Št’ovíček, J., Singular compactness and definability for Σ-cotorsion and Gorenstein modules, Sel. Math. New Ser., 26, 2, Article 23 pp. (2020) · Zbl 1444.16010
[33] Simson, D., Pure-periodic modules and a structure of pure-projective resolutions, Pac. J. Math., 207, 1, 235-256 (2002) · Zbl 1056.16004
[34] Spaltenstein, N., Resolutions of unbounded complexes, Compos. Math., 65, 2, 121-154 (1988) · Zbl 0636.18006
[35] Št’ovíček, J., Deconstructibility and the Hill lemma in Grothendieck categories, Forum Math., 25, 1, 193-219 (2013) · Zbl 1262.18010
[36] Št’ovíček, J., Exact model categories, approximation theory, and cohomology of quasi-coherent sheaves, (Advances in Representation Theory of Algebras. Advances in Representation Theory of Algebras, EMS Ser. Congr. Rep. (2013), Eur. Math. Soc.: Eur. Math. Soc. Zürich), 297-367 · Zbl 1353.18012
[37] Št’ovíček, J., On purity and applications to coderived and singularity categories, Electronic preprint
[38] Trlifaj, J., Covers, envelopes, and cotorsion theories, (Lecture Notes for the Workshop “Homological Methods in Module Theory”. Lecture Notes for the Workshop “Homological Methods in Module Theory”, Cortona (September 2000)), 39 pp. Available from
[39] Warfield, R. B., Decomposability of finitely presented modules, Proc. Am. Math. Soc., 25, 1, 167-172 (1970) · Zbl 0204.05902
[40] Warfield, R. B., Large modules over Artinian rings, (Representation Theory of Algebras. Representation Theory of Algebras, Lecture Notes in Pure and Applied Mathematics, vol. 37 (1978)), 451-463 · Zbl 0389.16012
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.