×

Totally acyclic complexes. (English) Zbl 1405.16005

Summary: It is known that over an Iwanaga-Gorenstein ring the Gorenstein injective (Gorenstein projective, Gorenstein flat) modules are simply the cycles of acyclic complexes of injective (projective, flat) modules. We consider the question: are these characterizations only working over Iwanaga-Gorenstein rings? We prove that if \(R\) is a commutative noetherian ring of finite Krull dimension then the following are equivalent: 1. \(R\) is an Iwanaga-Gorenstein ring. 2. Every acyclic complex of injective modules is totally acyclic. 3. The cycles of every acyclic complex of Gorenstein injective modules are Gorenstein injective. 4. Every acyclic complex of projective modules is totally acyclic. 5. The cycles of every acyclic complex of Gorenstein projective modules are Gorenstein projective. 6. Every acyclic complex of flat modules is F-totally acyclic. 7. The cycles of every acyclic complex of Gorenstein flat modules are Gorenstein flat. Thus we improve slightly on a result of S. Iyengar and H. Krause; in [Doc. Math. 11, 207–240 (2006; Zbl 1119.13014)] they proved that for a commutative noetherian ring \(R\) with a dualizing complex, the class of acyclic complexes of injectives coincides with that of totally acyclic complexes of injectives if and only if \(R\) is Gorenstein. We replace the dualizing complex hypothesis by the finiteness of the Krull dimension, and add more equivalent conditions. In the second part of the paper we focus on the noncommutative case. We prove that for a two sided noetherian ring \(R\) of finite finitistic flat dimension that satisfies the Auslander condition the following are equivalent: 1. Every complex of injective (left and respectively right) \(R\)-modules is totally acyclic. 2. \(R\) is Iwanaga-Gorenstein.

MSC:

16E10 Homological dimension in associative algebras
16E30 Homological functors on modules (Tor, Ext, etc.) in associative algebras

Citations:

Zbl 1119.13014

References:

[1] Bass, H., On the ubiquity of Gorenstein rings, Math. Z., 82, 8-28 (1963) · Zbl 0112.26604
[2] Bennis, D., Rings over which the class of Gorenstein flat modules is closed under extensions, Comm. Algebra, 37, 3, 855-868 (2009) · Zbl 1205.16006
[3] Bennis, D.; Mahdou, N., Strongly Gorenstein projective, injective, and flat modules, J. Pure Appl. Algebra, 210, 437-445 (2007) · Zbl 1118.13014
[4] Benson, D.; Goodearl, K., Periodic flat modules, and flat modules for finite groups, Pacific J. Math., 196, 1, 45-67 (2000) · Zbl 1073.20500
[5] Bravo, D.; Gillespie, J.; Hovey, M., The stable module category of a general ring, preprint
[6] Christensen, L. W.; Holm, H., The direct limit closure of perfect complexes, J. Pure Appl. Algebra, 219, 449-463 (2015) · Zbl 1357.16015
[7] Christensen, L. W.; Frankild, A.; Holm, H., On Gorenstein projective, injective and flat dimensions - a functorial description with applications, J. Algebra, 302, 231-279 (2006) · Zbl 1104.13008
[8] Enochs, E. E.; Huang, Z., Injective envelopes and (Gorenstein) flat covers, Algebr. Represent. Theory, 15, 1131-1145 (2012) · Zbl 1271.16009
[9] Enochs, E. E.; Iacob, A., Gorenstein injective covers and envelopes over noetherian rings, Proc. Amer. Math. Soc., 143, 5-12 (2015) · Zbl 1307.18013
[10] Enochs, E. E.; Jenda, O. M.G., Gorenstein injective and projective modules, Math. Z., 220, 611-633 (1995) · Zbl 0845.16005
[11] Enochs, E. E.; Jenda, O. M.G., Relative Homological Algebra, de Gruyter Exp. Math., vol. 30 (2000), Walter de Gruyter · Zbl 0952.13001
[12] Enochs, E. E.; Jenda, O. M.G.; López-Ramos, J. A., The existence of Gorenstein flat covers, Math. Scand., 94, 46-62 (2004) · Zbl 1061.16003
[13] Enochs, E. E.; Jenda, O. M.G.; Torrecillas, B., Gorenstein flat modules, J. Nanjing Univ., 10, 1-9 (1994) · Zbl 0794.16001
[15] Estrada, S.; Iacob, A.; Odabaşı, S., Gorenstein flat and projective (pre)covers, submitted for publication · Zbl 1349.18027
[16] Fossum, R. M.; Griffith, P. A.; Reiten, I., Trivial Extensions of Abelian Categories, Lecture Notes in Math., vol. 456 (1975), Springer-Verlag: Springer-Verlag Berlin · Zbl 0303.18006
[17] Gillespie, J., The flat model structure on Ch(R), Trans. Amer. Math. Soc., 356, 8, 3369-3390 (2004) · Zbl 1056.55011
[18] Holm, H., Gorenstein homological dimensions, J. Pure Appl. Algebra, 189, 1, 167-193 (2004) · Zbl 1050.16003
[19] Huang, Z., On Auslander type conditions of modules, preprint, available at · Zbl 07665063
[20] Iacob, A., Gorenstein injective envelopes and covers over two sided noetherian rings, Comm. Algebra (2016), in press · Zbl 1349.18028
[21] Iacob, A., Gorenstein flat preenvelopes, Osaka J. Math., 52, 895-903 (2015) · Zbl 1375.18070
[22] Iyengar, S.; Krause, H., Acyclicity versus total acyclicity for complexes over noetherian rings, Doc. Math., 11, 207-240 (2006) · Zbl 1119.13014
[23] Iwanaga, Y., On rings with finite self injective dimension, Comm. Algebra, 7, 4, 393-414 (1979) · Zbl 0399.16010
[24] Iwanaga, Y., On rings with finite self injective dimension II, Tsukuba J. Math., 4, 1, 107-113 (1980) · Zbl 0459.16011
[25] Krause, H., The stable derived category of a Noetherian scheme, Compos. Math., 141, 5, 1128-1162 (2005) · Zbl 1090.18006
[26] Murfet, D.; Salarian, S., Totally acyclic complexes over noetherian schemes, Adv. Math., 226, 1096-1133 (2011) · Zbl 1205.14019
[27] Neeman, A., The homotopy category of flat modules, and Grothendieck duality, Invent. Math., 174, 2, 255-308 (2008) · Zbl 1184.18008
[28] Yan, H., Strongly cotorsion (torsion-free) modules and cotorsion pairs, Bull. Korean Math. Soc., 47, 1041-1052 (2010) · Zbl 1226.16008
[29] Yang, G.; Liu, Z., Cotorsion pairs and model structures on Ch(R), Proc. Edinb. Math. Soc. (2), 52, 783-797 (2011) · Zbl 1238.13023
[30] Yang, G., All modules have Gorenstein flat precovers, Comm. Algebra, 42, 7, 3078-3085 (2014) · Zbl 1325.16005
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.