×

Coherent rings, fp-injective modules, dualizing complexes, and covariant Serre-Grothendieck duality. (English) Zbl 1394.16005

Summary: For a left coherent ring \(A\) with every left ideal having a countable set of generators, we show that the coderived category of left \(A\)-modules is compactly generated by the bounded derived category of finitely presented left \(A\)-modules (reproducing a particular case of a recent result of J. Št’ovíček [“On purity and applications to coderived and singularity categories”, Preprint, arXiv:1412.1615] with our methods). Furthermore, we present the definition of a dualizing complex of fp-injective modules over a pair of noncommutative coherent rings \(A\) and \(B\), and construct an equivalence between the coderived category of \(A\)-modules and the contraderived category of \(B\)-modules. Finally, we define the notion of a relative dualizing complex of bimodules for a pair of noncommutative ring homomorphisms \(A\longrightarrow R\) and \(B\longrightarrow S\), and obtain an equivalence between the \(R/A\)-semicoderived category of \(R\)-modules and the \(S/B\)-semicontraderived category of \(S\)-modules. For a homomorphism of commutative rings \(A\longrightarrow R\), we also construct a tensor structure on the \(R/A\)-semicoderived category of \(R\)-modules. A vision of semi-infinite algebraic geometry is discussed in the introduction.

MSC:

16E35 Derived categories and associative algebras
16D90 Module categories in associative algebras
18D10 Monoidal, symmetric monoidal and braided categories (MSC2010)
13D09 Derived categories and commutative rings

References:

[1] Becker, H.: Models for singularity categories. Adv. Math. 254, 187-232 (2014). arXiv:1205.4473 [math.CT] · Zbl 1348.16009 · doi:10.1016/j.aim.2013.11.016
[2] Bezrukavnikov, R., Positselski, L.: On semi-infinite cohomology of finite-dimensional graded algebras. Compos. Math. 146(2), 480-496 (2010). arXiv:0803.3252 [math.QA] · Zbl 1193.17011 · doi:10.1112/S0010437X09004382
[3] Christensen, L.W., Frankild, A., Holm, H.: On Gorenstein projective, injective, and flat dimensions—a functorial description with applications. J. Algebra 302(1), 231-279 (2006). arXiv:math.AC/0403156 · Zbl 1104.13008 · doi:10.1016/j.jalgebra.2005.12.007
[4] Efimov, A.I., Positselski, L.: Coherent analogues of matrix factorizations and relative singularity categories. Algebra Number Theory 9(5), 1159-1292 (2015). arXiv:1102.0261 [math.CT] · Zbl 1333.14018 · doi:10.2140/ant.2015.9.1159
[5] Eklof, P.C., Trlifaj, J.: How to make Ext vanish. Bull. Lond. Math. Soci. 33(1), 41-51 (2001) · Zbl 1030.16004 · doi:10.1112/blms/33.1.41
[6] Gillespie, J.: Model structures on exact categories. J. Pure Appl. Algebra 215(12), 2892-2902 (2011). arXiv:1009.3574 [math.AT] · Zbl 1315.18019 · doi:10.1016/j.jpaa.2011.04.010
[7] Gruson, L., Jensen, C.U.: Dimensions cohomologiques reliées aux foncteurs \[\varprojlim^{(i)}\] lim←(i). In: Dubreil P., Malliavin M.-P. (eds) Algebra Seminar, 33rd Year. Lecture Notes in Math. vol. 867, pp. 234-294 (1981) · Zbl 1316.13020
[8] Hovey, M.: Cotorsion pairs, model category structures, and representation theory. Math. Zeitschrift 241(3), 553-592 (2002) · Zbl 1016.55010 · doi:10.1007/s00209-002-0431-9
[9] Iyengar, S., Krause, H.: Acyclicity versus total acyclicity for complexes over noetherian rings. Doc. Math. 11, 207-240 (2006) · Zbl 1119.13014
[10] Jørgensen, P.: The homotopy category of complexes of projective modules. Adv. Math. 193(1), 223-232 (2005). arXiv:math.RA/0312088 · Zbl 1068.18012 · doi:10.1016/j.aim.2004.05.003
[11] Krause, H.: The stable derived category of a Noetherian scheme. Compos. Math. 141(5), 1128-1162 (2005). arXiv:math.AG/0403526 · Zbl 1090.18006 · doi:10.1112/S0010437X05001375
[12] Krause, H.: Approximations and adjoints in homotopy categories. Math. Ann. 353(3), 765-781 (2012). arXiv:1005.0209 [math.CT] · Zbl 1323.18003 · doi:10.1007/s00208-011-0703-y
[13] Mao, L., Ding, N.: Notes on \[FP\] FP-projective modules and \[FP\] FP-injective modules. In: Chen J., Ding N., Marubayashi H. (eds) Advances in Ring Theory, Proceedings of the 4th China-Japan-Korea International Conference, June 2004, pp. 151-166. World Scientific (2005) · Zbl 1116.16304
[14] Mitchell, B.: The cohomological dimension of a directed set. Can. J. Math. 25(2), 233-238 (1973) · Zbl 0279.18013 · doi:10.4153/CJM-1973-023-0
[15] Miyachi, J.: Derived categories and Morita duality theory. J. Pure Appl. Algebra 128(2), 153-170 (1998) · Zbl 0926.16003 · doi:10.1016/S0022-4049(97)00046-7
[16] Murfet, D.: The mock homotopy category of projectives and Grothendieck duality. Ph.D. Thesis, Australian National University (2007). http://www.therisingsea.org/thesis.pdf · Zbl 1030.16004
[17] Porta, M., Shaul, L., Yekutieli, A.: On the homology of completion and torsion. Algebras Represent. Theory 17(1), 31-67 (2014). arXiv:1010.4386 [math.AC] · Zbl 1316.13020 · doi:10.1007/s10468-012-9385-8
[18] Positselski, L.: Homological algebra of semimodules and semicontramodules: semi-infinite homological algebra of associative algebraic structures. Appendix C in collaboration with D. Rumynin; Appendix D in collaboration with S. Arkhipov. Monografie Matematyczne vol. 70, Birkhäuser/Springer, Basel, xxiv+349 pp. (2010) arXiv:0708.3398 [math.CT] · Zbl 1202.18001
[19] Positselski, L.: Two kinds of derived categories, Koszul duality, and comodule-contramodule correspondence. Memoirs of the American Math Society, vol. 212, No. 996, vi+133 pp. (2011) arXiv:0905.2621 [math.CT] · Zbl 1275.18002
[20] Positselski, L.: Contraherent cosheaves. arXiv:1209.2995 [math.CT] · Zbl 1068.18012
[21] Positselski, L.: Semi-infinite algebraic geometry. Slides of the Presentation at the Conference “Some Trends in Algebra 2015”, Prague (2015). http://www.karlin.mff.cuni.cz/ sta/pres/positselski.pdf, http://positselski.narod.ru/semi-inf-nopause.pdf, http://positselski.narod.ru/semi-inf.pdf · Zbl 1348.16009
[22] Positselski, L.: Dedualizing complexes and MGM duality. J. Pure Appl. Algebra 220(12), 3866-3909 (2016). arXiv:1503.05523 [math.CT] · Zbl 1351.18012 · doi:10.1016/j.jpaa.2016.05.019
[23] Stenström, B.: Coherent rings and \[FP\] FP-injective modules. J. Lond. Math. Soc. (2) 2(2), 323-329 (1970) · Zbl 0194.06602 · doi:10.1112/jlms/s2-2.2.323
[24] Št’ovíček, J.: On purity and applications to coderived and singularity categories. arXiv:1412.1615 [math.CT] · Zbl 0948.16006
[25] Trlifaj, J.: Covers, envelopes, and cotorsion theories. Lecture Notes for the Workshop “Homological Methods in Module Theory”, Cortona (2000). http://matematika.cuni.cz/dl/trlifaj/NALG077cortona.pdf
[26] Yekutieli, A.: Dualizing complexes over noncommutative graded algebras. J. Algebra 153(1), 41-84 (1992) · Zbl 0790.18005 · doi:10.1016/0021-8693(92)90148-F
[27] Yekutieli, A., Zhang, J.J.: Rings with Auslander dualizing complexes. J. Algebra 213(1), 1-51 (1999). arXiv:math.RA/9804005 · Zbl 0948.16006 · doi:10.1006/jabr.1998.7657
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.