×

Observer-based controller for treatment of hepatitis C infection using fractional order model. (English) Zbl 1534.92095

MSC:

92D30 Epidemiology
93C40 Adaptive control/observation systems
93B52 Feedback control
Full Text: DOI

References:

[1] World Health Organization. Global hepatitis report 2017. World Health Organization; 2017.
[2] ZaltronS, SpinettiA, BiasiL, BaigueraC, CastelliF. Chronic HCV infection: epidemiological and clinical relevance. BMC Infect Dis. 2012;12(2):1‐7. doi:10.1186/1471‐2334‐12‐S2‐S2
[3] ScagnolariC, MonteleoneK, CacciottiG, AntonelliG. Role of interferons in chronic hepatitis C infection. Curr Drug Targets. 2017;18(7):844‐850. doi:10.2174/1389450117666160201112632
[4] PalumboE. Pegylated interferon and ribavirin treatment for hepatitis C virus infection. Ther Adv Chronic Dis. 2011;2(1):39‐45. doi:10.1177/2040622310384308
[5] AsselahT, MarcellinP, SchinaziRF. Treatment of hepatitis C virus infection with direct‐acting antiviral agents: 100
[6] FosterGR, IrvingWL, CheungMC, et al. Impact of direct acting antiviral therapy in patients with chronic hepatitis C and decompensated cirrhosis. J Hepatol. 2016;64(6):1224‐1231. doi:10.1016/j.jhep.2016.01.029
[7] NeumannAU, LamNP, DahariH, et al. Hepatitis C viral dynamics in vivo and the antiviral efficacy of interferon‐α therapy. Science. 1998;282(5386):103‐107. doi:10.1126/science.282.5386.103
[8] DahariH, LoA, RibeiroRM, PerelsonAS. Modeling hepatitis C virus dynamics: liver regeneration and critical drug efficacy. J Theor Biol. 2007;247(2):371‐381. doi:10.1016/j.jtbi.2007.03.006 · Zbl 1455.92070
[9] SnoeckE, ChanuP, LavielleM, et al. A comprehensive hepatitis C viral kinetic model explaining cure. Clin Pharmacol Ther. 2010;87(6):706‐713. doi:10.1038/clpt.2010.35
[10] DixitNM. Advances in the mathematical modelling of hepatitis C virus dynamics. J Indian Inst Sci. 2008;88(1):37‐43.
[11] BanerjeeS, KevalR, GakkharS. Modeling the dynamics of Hepatitis C virus with combined antiviral drug therapy: Interferon and Ribavirin. Math Biosci. 2013;245(2):235‐248. doi:10.1016/j.mbs.2013.07.005 · Zbl 1308.92062
[12] BléG, EstevaL, PeregrinoA. Global analysis of a mathematical model for hepatitis C considering the host immune system. J Math Anal Appl. 2018;461(2):1378‐1390. doi:10.1016/j.jmaa.2018.01.050 · Zbl 1385.34035
[13] ElaiwAM, GhalebSA, HobinyA. Effect of time delay and antibodies on HCV dynamics with cure rate and two routes of infection. J Appl Math Phys. 2018;6(5):1120‐1138. doi:10.4236/jamp.2018.65096
[14] LiJ, MenK, YangY, LiD. Dynamical analysis on a chronic hepatitis C virus infection model with immune response. J Theor Biol. 2015;365:337‐346. doi:10.1016/j.jtbi.2014.10.039 · Zbl 1314.92093
[15] MeskafA, TabitY, AllaliK. Global analysis of a HCV model with CTL, antibody responses and therapy. Appl Math Sci. 2015;9(81):3997‐4008. doi:10.12988/ams.2015.54334
[16] AhmedE, El‐SakaHA. On fractional order models for Hepatitis C. Nonlinear Biomed Phys. 2010;4(1):1‐3. doi:10.1186/1753‐4631‐4‐1
[17] RihanFA. Numerical modeling of fractional‐order biological systems. Abstr Appl Anal2013;2013:816803, 1, 11. doi:10.1155/2013/816803 · Zbl 1470.65131
[18] PetrášI, MaginRL. Simulation of drug uptake in a two compartmental fractional model for a biological system. Commun Nonlinear Sci Numer Simul. 2011;16(12):4588‐4595. doi:10.1016/j.cnsns.2011.02.012 · Zbl 1229.92043
[19] MaginRL. Fractional calculus models of complex dynamics in biological tissues. Comput Math Appl. 2010;59(5):1586‐1593. doi:10.1016/j.camwa.2009.08.039 · Zbl 1189.92007
[20] ZafarZUA, RehanK, MushtaqM. HIV/AIDS epidemic fractional‐order model. J Differ Equ Appl. 2017;23(7):1298‐1315. doi:10.1080/10236198.2017.1321640 · Zbl 1379.92070
[21] CarvalhoAR, PintoCM, BaleanuD. HIV/HCV coinfection model: a fractional‐order perspective for the effect of the HIV viral load. Adv Differ Equ. 2018;2018(1):1‐22. doi:10.1186/s13662‐017‐1456‐z · Zbl 1445.92266
[22] AliKK, OsmanMS, BaskonusHM, ElazabbNS, İlhanE. Analytical and numerical study of the HIV‐1 infection of CD4+ T‐cells conformable fractional mathematical model that causes acquired immunodeficiency syndrome with the effect of antiviral drug therapy. Math Meth Appl Sci. 2020;1‐17. doi:10.1002/mma.7022
[23] BoukhouimaA, LotfiEM, MahroufM, RosaS, TorresDF, YousfiN. Stability analysis and optimal control of a fractional HIV‐AIDS epidemic model with memory and general incidence rate. Eur Phys J Plus. 2021;136(1):1‐20. doi:10.1140/epjp/s13360‐020‐01013‐3
[24] HassaniH, AvazzadehZ, MachadoJT, AgarwalP, BakhtiarM. Optimal solution of a fractional HIV/AIDS epidemic mathematical model. J Comput Biol. 2022;29(3):276‐291. doi:10.1089/cmb.2021.0253
[25] BaleanuD, JajarmiA, SajjadiSS, MozyrskaD. A new fractional model and optimal control of a tumor‐immune surveillance with non‐singular derivative operator. Chaos. 2019;29(8):083127. doi:10.1063/1.5096159 · Zbl 1420.92039
[26] ValentimCA, RabiJA, DavidSA, MachadoJAT. On multistep tumor growth models of fractional variable‐order. Bios. 2021;199:104294. doi:10.1016/j.biosystems.2020.104294
[27] PaivaHM, KellerWS, daCunhaLGR. Blood‐glucose regulation using fractional‐order pid control. J Control Autom Electr Syst. 2020;31(1):1‐9. doi:10.1007/s40313‐019‐00552‐0
[28] DavidSA, ValentimCA, DebboucheA. Fractional modeling applied to the dynamics of the action potential in cardiac tissue. Fractal Fract. 2022;6(3):149. doi:10.3390/fractalfract6030149
[29] RosaS, TorresDF. Fractional‐order modelling and optimal control of cholera transmission. Fractal Fract.2021;5(4):261. doi:10.3390/fractalfract5040261
[30] UgarteJP, TobónC, SaizJ, LopesAM, MachadoJAT. Spontaneous activation under atrial fibrosis: A model using complex order derivatives. Commun Nonlinear Sci Numer Simul.2021;95:105618. doi:10.1016/j.cnsns.2020.105618 · Zbl 1457.92046
[31] CardosoLC, Dos SantosFLP, CamargoRF. Analysis of fractional‐order models for hepatitis B. Comput Appl Math. 2018;37(4):4570‐4586. doi:10.1007/s40314‐018‐0588‐4 · Zbl 1401.92178
[32] RidaSZ, RadyAA, ArafaAAM, KhalilM. Approximate solution of a fractional order model of HCV infection with drug therapy effect. Int J Appl Math Res. 2012;1(2):108‐116. doi:10.14419/ijamr.v1i2.25
[33] SaadKM, Gómez‐AguilarJF, AlmadiyAA. A fractional numerical study on a chronic hepatitis C virus infection model with immune response. Chaos Solitons Fractals. 2020;139:110062. doi:10.1016/j.chaos.2020.110062 · Zbl 1490.92034
[34] RihanFA, Sheek‐HusseinM, TridaneA, YafiaR. Dynamics of hepatitis C virus infection: mathematical modeling and parameter estimation. Math Modell Nat Phenom. 2017;12(5):33‐47. doi:10.1051/mmnp/201712503 · Zbl 1385.34037
[35] RihanFA, ArafaAA, RakkiyappanR, RajivganthiC, XuY. Fractional‐order delay differential equations for the dynamics of hepatitis C virus infection with IFN‐α treatment. Alexandr Eng J. 2021;60(5):4761‐4774. doi:10.1016/j.aej.2021.03.057
[36] ChakrabartySP, JoshiHR. Optimally controlled treatment strategy using interferon and ribavirin for hepatitis C. J Biol Syst. 2009;17(01):97‐110. doi:10.1142/S0218339009002727 · Zbl 1369.92052
[37] KevalR, BanerjeeS. Dynamics of Hepatitis C viral load with optimal control treatment strategy. Math Biol Biol Phys. 2017;141‐150. doi:10.1142/9789813227880_0008 · Zbl 1395.92081
[38] PachputeG, ChakrabartySP. Dynamics of hepatitis C under optimal therapy and sampling based analysis. Commun Nonlinear Sci Numer Simul.2013;18(8):2202‐2212. doi:10.1016/j.cnsns.2012.12.032 · Zbl 1274.92035
[39] MojaverA, KheiriH. Dynamical analysis of a class of hepatitis C virus infection models with application of optimal control. Int J Biomath. 2016;9(03):1650038. doi:10.1142/S1793524516500388 · Zbl 1408.37146
[40] PeregrinoA, EstevaL, BléG. Optimal control applied to hepatitis c therapy considering immune system. J Pure Appl Math Adv Appl. 2018;19(1):9‐35. doi:10.18642/jpamaa_7100121911
[41] ZeinaliS, ShahrokhiM, IbeasA. Observer‐based impulsive controller design for treatment of hepatitis C disease. Ind Eng Chem Res.2020;59(43):19370‐19382. doi:10.1021/acs.iecr.0c04058
[42] ZeinaliS, ShahrokhiM. Adaptive control strategy for treatment of hepatitis C infection. Ind Eng Chem Res. 2019;58(33):15262‐15270. doi:10.1021/acs.iecr.9b02988
[43] HamzaA, AhmadI, UneebM. Fuzzy logic and Lyapunov‐based non‐linear controllers for HCV infection. IET Syst Biol. 2021;15(2):53‐71. doi:10.1049/syb2.12014
[44] ChenB, ZhangH, LinC. Observer‐based adaptive neural network control for nonlinear systems in nonstrict‐feedback form. IEEE Trans Neural Networks Learn Syst. 2015;27(1):89‐98. doi:10.1109/TNNLS.2015.2412121
[45] WeiM, LiYX, TongS. Adaptive fault‐tolerant control for a class of fractional order non‐strict feedback nonlinear systems. Int J Syst Sci. 2021;52(5):1014‐1025. doi:10.1080/00207721.2020.1852627 · Zbl 1483.93314
[46] YangW, YuW, LvY, ZhuL, HayatT. Adaptive fuzzy tracking control design for a class of uncertain nonstrict‐feedback fractional‐order nonlinear SISO systems. IEEE Trans Cybern. 2019;51(6):3039‐3053. doi:10.1109/TCYB.2019.2931401
[47] WenC, ZhouJ, LiuZ, SuH. Robust adaptive control of uncertain nonlinear systems in the presence of input saturation and external disturbance. IEEE Trans Autom Control.2011;56(7):1672‐1678. doi:10.1109/TAC.2011.2122730 · Zbl 1368.93317
[48] ShengD, WeiY, ChengS, WangY. Observer‐based adaptive backstepping control for fractional order systems with input saturation. ISA Trans. 2018;82:18‐29. doi:10.1016/j.isatra.2017.06.021
[49] SongS, ZhangB, SongX, ZhangZ. Neuro‐fuzzy‐based adaptive dynamic surface control for fractional‐order nonlinear strict‐feedback systems with input constraint. IEEE Trans Syst Man Cybern: Syst. 2019;360:172‐184. doi:10.1016/j.neucom.2019.06.014
[50] YuZ, YangY, LiS, SunJ. Observer‐based adaptive finite‐time quantized tracking control of nonstrict‐feedback nonlinear systems with asymmetric actuator saturation. IEEE Trans Syst Man Cybern: Syst. 2018;50(11):4545‐4556. doi:10.1109/TSMC.2018.2854927
[51] ChenY, FeiS, ZhangK. Stabilization of impulsive switched linear systems with saturated control input. Nonlinear Dyn. 2012;69(3):793‐804. doi:10.1007/s11071‐011‐0305‐y · Zbl 1253.93118
[52] YangT, MengZ, DimarogonasDV, JohanssonKH. Global consensus for discrete‐time multi‐agent systems with input saturation constraints. Automatica. 2014;50(2):499‐506. doi:10.1016/j.automatica.2013.11.008 · Zbl 1364.93036
[53] BattistelliG, ChisciL. Stability of consensus extended Kalman filter for distributed state estimation. Automatica.2016;68:169‐178. doi:10.1016/j.automatica.2016.01.071 · Zbl 1334.93176
[54] AfriC, AndrieuV, BakoL, DufourP. State and parameter estimation: A nonlinear Luenberger observer approach. IEEE Trans Autom Control. 2016;62(2):973‐980. doi:10.1109/TAC.2016.2566804 · Zbl 1364.93387
[55] Martinez‐FuentesO, Martínez‐GuerraR. A high‐gain observer with Mittag-Leffler rate of convergence for a class of nonlinear fractional‐order systems. Commun Nonlinear Sci Numer Simul.2019;79:104909. doi:10.1016/j.cnsns.2019.104909 · Zbl 1508.93124
[56] YangS, YuJ, HuC, JiangH. Quasi‐projective synchronization of fractional‐order complex‐valued recurrent neural networks. Neural Netw. 2018;104:104‐113. doi:10.1016/j.neunet.2018.04.007 · Zbl 1441.93287
[57] GongP, LanW, HanQL. Robust adaptive fault‐tolerant consensus control for uncertain nonlinear fractional‐order multi‐agent systems with directed topologies. Automatica.2020;117:109011. doi:10.1016/j.automatica.2020.109011 · Zbl 1442.93036
[58] LiY, ChenY, PodlubnyI. Mittag-Leffler stability of fractional order nonlinear dynamic systems. Automatica.2009;45(8):1965‐1969. doi:10.1016/j.automatica.2009.04.003 · Zbl 1185.93062
[59] DengH, KrstićM. Stochastic nonlinear stabilization—I: a backstepping design. Syst Control Lett. 1997;32(3):143‐150. doi:10.1016/S0167‐6911(97)00068‐6 · Zbl 0902.93049
[60] BoulkrouneA, TadjineM, M’SaadM, FarzaM. How to design a fuzzy adaptive controller based on observers for uncertain affine nonlinear systems. Fuzzy Set Syst. 2008;159(8):926‐948. doi:10.1016/j.fss.2007.08.015 · Zbl 1170.93335
[61] PishroA, ShahrokhiM, SadeghiH. Fault‐tolerant adaptive fractional controller design for incommensurate fractional‐order nonlinear dynamic systems subject to input and output restrictions. Chaos Soliton Fract. 2022;157:111930. doi:10.1016/j.chaos.2022.111930 · Zbl 1498.93360
[62] ZhaoX, ZhengX, NiuB, LiuL. Adaptive tracking control for a class of uncertain switched nonlinear systems. Automatica.2015;52:185‐191. doi:10.1016/j.automatica.2014.11.019 · Zbl 1309.93081
[63] KhodabakhshiN, VaezpourSM, BaleanuD. On dynamics of fractional‐order model of HCV infection. J Math Anal. 2017;8(1):16‐27.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.