×

Dynamical analysis on a chronic hepatitis C virus infection model with immune response. (English) Zbl 1314.92093

Summary: A mathematical model for HCV infection is established, in which the effect of dendritic cells (DC) and cytotoxic T lymphocytes (CTL) on HCV infection is considered. The basic reproduction numbers of chronic HCV infection and immune control are found. The obtained results show that the infection dies out finally as the basic reproduction number of HCV infection is less than unity, and the infection becomes chronic as it is greater than unity. In the presence of chronic infection, the existence of immune control equilibrium is discussed completely, which illustrates that the backward bifurcation may occur under certain conditions, and that the two quantities, the sizes of the activated DC and the removed CTL during their average life-terms, play a critical role in controlling chronic HCV infection and immune response. The occurrence of backward bifurcation implies that there may be bistability for the model, i.e., the outcome of infection depends on the initial situation. By choosing the activated rate of non-activated DC or the cross-representation rate of activated DC as bifurcation number, Hopf bifurcation for certain condition shows the existence of periodic solution of the model. Again, numerical simulations suggest the dynamical complexity of the model including the instability of immune control equilibrium and the existence of stable periodic solution.

MSC:

92C60 Medical epidemiology
34D23 Global stability of solutions to ordinary differential equations
Full Text: DOI

References:

[1] Alter, M. J., Epidemiology of hepatitis C virus infection, World J. Gastroenterol., 13, 17, 2436-2441 (2007)
[2] Barth, H.; Ulsenheimer, A.; Pape, G. R.; Diepolder, H. M.; Hoffmann, M.; Neumann-Haefelin, C.; Thimme, R.; Henneke, P.; Klein, R.; Paranhos-Baccalà, G.; Depla, E.; Liang, T. J.; Blum, H. E.; Baumert, T. F., Uptake and presentation of hepatitis C virus like particles by human dendritic cells, Blood, 105, 9, 3605-3614 (2005)
[3] Dahari, H.; Lo, A.; Ribeiro, R. M.; Perelson, A. S., Modeling hepatitis C virus dynamicsliver regeneration and critical drug efficacy, J. Theor. Biol., 247, 2, 371-381 (2007) · Zbl 1455.92070
[4] Dahari, H.; Ribeiro, R. M.; Perelson, A. S., Triphasic decline of HCV RNA during antiviral therapy, Hepatology, 46, 1, 16-21 (2007)
[5] Dolganiuc, A.; Szabo, G., Dendritic cells in hepatitis C infectioncan they (help) win the battle?, J. Gastroenterol., 46, 4, 432-447 (2011)
[6] Echeverria, I.; Pereboev, A.; Silva, L.; Zabaleta, A.; Riezu-Boj, J. I.; Bes, M.; Cubero, M.; Borras-Cuesta, F.; Lasarte, J. J.; Esteban, J. I.; Prieto, J.; Sarobe, P., Enhanced T cell responses against hepatitis C virus by ex vivo targeting of adenoviral particles to dendritic cells, Hepatology, 54, 1, 28-37 (2011)
[7] Fausto, N., Liver regeneration and repairhepatocytes, progenitor cells, and stem cells, Hepatology, 39, 6, 1477-1487 (2004)
[8] Lavanchy, D., Evolving epidemiology of hepatitis C virus, Clin. Microbiol. Infect., 17, 2, 107-115 (2011)
[9] Lechner, F.; Wong, D. K.; Dunbar, P. R.; Chapman, R.; Chung, R. T.; Dohrenwend, P.; Robbins, G.; Phillips, R.; Klenerman, P.; Walker, B. D., Analysis of successful immune responses in persons infected with hepatitic C virus, J. Exp. Med., 191, 9, 1499-1512 (2000)
[10] Liang, T. J.; Rehermann, B.; Seeff, L. B.; Hoofnagle, J. H., Pathogenesis, natural history, treatment, and prevention of hepatitis C, Ann. Intern. Med., 132, 4, 296-305 (2000)
[11] Matheoud, D.; Perié, L.; Hoeffel, G.; Vimeux, L.; Parent, I.; Marañón, C.; Bourdoncle, P.; Renia, L.; Prevost-Blondel, A.; Lucas, B.; Feuillet, V.; Hosmalin, A., Cross-presentation by dendritic cells from live cells induces protective immune responses in vivo, Blood, 115, 22, 4412-4420 (2010)
[12] Michalopoulos, G. K.; DeFrances, M. C., Liver regeneration, Science, 276, 5309, 60-66 (1997)
[13] Neumann, A. U.; Lam, N. P.; Dahari, H.; Gretch, D. R.; Wiley, T. E.; Layden, T. J.; Perelson, A. S., Hepatitis C viral dynamics in vivo and the antiviral efficacy of interferon-alpha therapy, Science, 282, 5386, 103-107 (1998)
[14] Nowak, M. A.; Bangham, C. R.M., Population dynamics of immune responses to persistent viruses, Science, 272, 5258, 74-79 (1996)
[15] Nowak, M. A.; May, R. M., Virus Dynamics: Mathematical Principles of Immunology and Virology (2000), Oxford University Press: Oxford University Press New York · Zbl 1101.92028
[16] Pachiadakis, I.; Pollara, G.; Chain, B. M.; Naoumov, N. V., Is hepatitis C virus infection of dendritic cells a mechanism facilitating viral persistence?, Lancet Infect. Dis., 5, 5, 296-304 (2005)
[17] Perelson, A.; Neumann, A.; Markowitz, M.; Leonard, J.; Ho, D., HIV-1 dynamics in vivovirion clearance rate, infected cell life-span, and viral generation time, Science, 271, 5255, 1582-1586 (1996)
[19] Puoti, M.; Zonaro, A.; Ravaggi, A.; Marin, M. G.; Castelnuovo, F.; Cariani, E., Hepatitis C virus RNA and antibody response in the clinical course of acute hepatitis C virus infection, Hepatology, 16, 4, 877-881 (1992)
[20] Reluga, T. C.; Dahari, H.; Perelson, A. S., Analysis of hepatitis C virus infection models with hepatocyte homeostasis, SIAM J. Appl. Math., 69, 4, 999-1023 (2009) · Zbl 1167.92014
[21] Sehgal, M.; Khan, Z. K.; Talal, A. H.; Jain, P., Dendritic cells in HIV-1 and HCV infectionCan they help win the battle?, Virol.: Res. Treat., 4, 1, 1-25 (2013)
[22] Sharma, S. D., Hepatitis C virusmolecular biology and current therapeutic options, Indian J. Med. Res., 131, 1, 17-34 (2010)
[23] Shepard, C. W.; Finelli, L.; Alter, M. J., Global epidemiology of hepatitis C virus infection, Lancet Infect. Dis., 5, 9, 558-567 (2005)
[24] Thieme, H. R., Convergence results and a Poincaré-Bendixson trichotomy for asymptotically autonomous differential equations, J. Math. Biol., 30, 7, 755-763 (1992) · Zbl 0761.34039
[25] Wei, X.; Ghosh, S. K.; Taylor, M. E.; Johnson, V. A.; Emini, E. A.; Deutsch, P.; Lifson, J. D.; Bonhoeffer, S.; Nowak, M. A.; Hahn, B. H.; Saag, M. S.; Shaw, G. M., Viral dynamics in human immunodeficiency virus type 1 infection, Nature, 373, 6510, 117-122 (1995)
[26] Wodarz, D., Hepatitis C virus dynamics and pathologythe role of CTL and antibody responses, J. Gen. Virol., 84, 7, 1743-1750 (2003)
[27] Wodarz, D.; Jansen, V. A., A dynamical perspective of CTL cross-priming and regulationimplications for cancer immunology, Immunol. Lett., 86, 3, 213-227 (2003)
[28] Zein, N. N., Clinical significance of hepatitis C virus genotypes, Clin. Microbiol. Rev., 13, 2, 223-235 (2000)
[29] Zhou, X.; Shi, X.; Zhang, Z.; Song, X., Dynamical behavior of a virus dynamics model with CTL immune response, Appl. Math. Comput., 213, 2, 329-347 (2009) · Zbl 1165.92027
[30] Zhou, Y.; Zhang, Y.; Yao, Z.; Moorman, J. P.; Jia, Z., Dendritic cell-based immunity and vaccination against hepatitis C virus infection, Immunology, 136, 4, 385-396 (2012)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.