×

Dynamics of hepatitis C virus infection: mathematical modeling and parameter estimation. (English) Zbl 1385.34037

Summary: In this paper, we provide a differential mathematical model with non-integer order derivative (fractional-order) to investigate the dynamics of Hepatitis-C Virus (HCV) replication, in presence of interferon-\(\alpha\) (IFN) treatment. The fractional-order is considered to represent the intermediate cellular interactions and intracellular delay of the viral life cycle. We mathematically analyze and characterize the steady states and dynamical behavior of the model in presence of interferon-\(\alpha\) treatment. We deduce a threshold parameter \(\operatorname{Re}_0\) (average number of newly infected cells produced by a single infected cell) in terms of the treatment efficacy parameter \(0\leq \varepsilon < 1\) and other parameters. We also provide a numerical technique for solving the fractional-order model and fitting the model to real data during treatment. The numerical simulations confirm that the fractional-order differential models have the ability to provide accurate descriptions of nonlinear biological systems with memory. The analyses presented here give an insight to understand the dynamics of HCV infection.

MSC:

34C60 Qualitative investigation and simulation of ordinary differential equation models
34A08 Fractional ordinary differential equations
92C60 Medical epidemiology
34D05 Asymptotic properties of solutions to ordinary differential equations
34D20 Stability of solutions to ordinary differential equations
Full Text: DOI

References:

[1] WHO Fact Sheet 164-Hepatitis C. , Januray 31, 2014.
[2] H. N. Afdhal. The natural history of hepatitis C. Semin Liver Dis, 24(Suppl 2:38):5, 6, 2004.
[3] E. Ahmed and H. A. El-Saka. On fractional order models for hepatitis C. Nonlinear Biomed Phys, 4(1):1-4, 2010.
[4] E. Ahmed, A. Hashish, and F. A. Rihan. On fractional order cancer model. J. Frac. Cal. Appl., 3(2):1-6, 2012. · Zbl 1488.34261
[5] Y. Bard. Nonlinear Parameter Estimation. Academic Press, NewYork, 1974. · Zbl 0345.62045
[6] K S. Cole. Electric conductance of biological systems. Cold Spring Harb Symp Quant Biol, pages 107-116, 1993.
[7] H. Dahari, A. Lo, R. M. Ribeiro, and A. S. Perelson. Modeling hepatitis C virus dynamics: Liver regeneration and critical drug efficacy. J. Theor. Biol., 47:371-381, 2007. · Zbl 1455.92070
[8] H. Dahari, M. Major, X. Zhang, K. Mihalik, C. M. Rice, A. S. Perelson, S. M. Feinstone, and A. U. Neumann. Mathematical modeling of primary hepatitis C infection: Noncytolytic clearance and early blockage of virion production. Gastroenterology, 128:1056-1066, 2005.
[9] H. Dahari, R. M. Ribeiro, and A. S. Perelson. Triphasic decline of HCV RNA during antiviral therapy. Hepatology, 46:16-21, 2007.
[10] V. D. Djordjević, J. Jariæ, B. Fabry, J. J. Fredberg, and D. Stamenoviæ. Fractional derivatives embody essential features of cell rheological behavior. Annal. Biomed. Eng., 31:692-699, 2003.
[11] I. K. Dontwi, N. K. Frempong, D. E. Bentil, I Adetunde, and E. Owusu-Ansah. Mathematical modeling of hepatitis C virus transmission among injecting drug users and the impact of vaccination. Am J Sci Ind Res., 1(1):41-6, 2010.
[12] R. Hilfer and Ed. Applications of Fractional Calculus in Physics. World Scientific, River Edge, NJ, USA, 2000. · Zbl 0998.26002
[13] W. Lin. Global existence theory and chaos control of fractional differential equations. J. Math. Anal. Appl., 332:709-726, 2007. · Zbl 1113.37016
[14] Richard L. Magin. Fractional calculus models of complex dynamics in biological tissues. Comput Math Appl, 59:1586-1593, 2010. · Zbl 1189.92007
[15] G.I. Marchuk, A.A Romanyukha, and G.A. Bocharov. Mathematical model of antiviral immune response ii: Parameter identification for acute viral hepatitis-B. J. Theor. Biol., 151:41-70, 1991.
[16] A. Mukhopadhya. Hepatitis C in India. J. Biosci., 33(4):465-473, 2008.
[17] A. U. Neumann, N. P. Lam, H. Dahari, D. R. Gretch, T. E. Wiley, T. J. Layden, and A. S. Perelson. Hepatitis C viral dynamics in vivo and the antiviral efficacy of interferon-α therapy. Science, 282:103-107, 1998.
[18] Z. M. Odibat and N.T. Shawagfeh. Generalized Taylor’s formula. Appl. Math. Comput., 186:286-293, 2007. · Zbl 1122.26006
[19] J. M. Pawlotsky, M. Bouvier-Alias, C. Hezode, F. Darthuy, J. Remire, and D. Dhumeaux. Standardization of hepatitis C virus RNA quantification. Hepatology, 32(3):654-9, 2000.
[20] A. S. Perelson. Modelling viral and immune system dynamics, 2002.
[21] A. S. Perelson, E. Herrmann, F. Micol, and S. Zeuzem. New kinetic models for the hepatitis C virus. Hepatology, 42:749-754, 2005.
[22] I. Podlubny. Fractional Differential Equations. Academic Press, 1999. · Zbl 0924.34008
[23] I. Ramirez. Mathematical Modeling of Immune Responses to Hepatitis C Virus Infection. PhD thesis: East Tennessee State University, 2014.
[24] F. A Rihan. Computational methods for delay parabolic and time fractional partial differential equations. Num. Meth. Partial Diff. Eqns., 26(6):1556-1571, 2010. · Zbl 1204.65114
[25] F. A. Rihan. Numerical modeling of fractional-order biological systems. Abst. Appl. Anal., 2013:11 pages, 2013. · Zbl 1470.65131
[26] F. A. Rihan. Current Topics in Salmonella and Salmonellosis (Ed.: Mihai Mares): Dynamics of Salmonella Infection. InTech, 2017.
[27] F. A. Rihan, S. Lakshmanan, A.H. Hashish, R. Rakkiyappan, and E. Ahmed. Fractional order delayed predator-prey systems with holling type-ii functional response. Nonlinear Dynamics, 80(1):777-789, 2015. · Zbl 1345.92123
[28] A. Rocco and B. J. West. Fractional calculus and the evolution of fractal phenomena. Physica A, 265:535, 1999.
[29] B. Roe and W. Hall. Cellular and molecular interactions in coinfection with hepatitis C virus and human immunodeficiency virus. Expert Rev Mol Med, Oct 20 (2008), 2008.
[30] A. Wasley and M. J. Alter. Epidemiology of hepatitis C: geographic differences and temporal trends. Semin Liver Dis, 20(1):116, 2000.
[31] H. Xu. Analytical approximations for a population growth model with fractional order. Commun Nonlinear Sci Numer Simulat, 14:1978-1983, 2009. · Zbl 1221.65210
[32] K. Yasui, T. Okanoue, Y. Murakami, Y. Itoh, M. Minami, S. Sakamoto, M. Sakamoto, and K. Nishioji. Dynamics of hepatities C verimia following interferon-α administration. J. Infect. Dis., 177:1475-1479, 1998.
[33] S. Zeuzem and E. Herrmann. Dynamics of hepatitis C virus infection. Ann Hepatol., 1 Apr-Jun(2):56-63, 2002.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.