×

Analytic bootstrap of mixed correlators in the \(O(n)\) CFT. (English) Zbl 1534.81084

Summary: We use large spin perturbation theory and the Lorentzian inversion formula to compute order-\(\epsilon\) corrections to mixed correlators in the \(O(n)\) Wilson-Fisher CFT in \(4 - \epsilon\) dimensions. In particular, we find the scaling dimensions and averaged OPE coefficients appearing in all correlators involving the operators \(\varphi\) and \(\varphi^2\), for \(\varphi^2\) in both the singlet and symmetric traceless representations of \(O(n)\). We extend some computations to the next order, and find order-\(\epsilon^2\) data for a number of quantities for the Ising case at \(n = 1\). Along the way, we discuss several interesting technical aspects which arise, including subleading corrections to mixed conformal blocks, projections onto higher twists in the inversion formula, and multiplet recombination.

MSC:

81T11 Higher spin theories
81T40 Two-dimensional field theories, conformal field theories, etc. in quantum mechanics
81T60 Supersymmetric field theories in quantum mechanics
81T13 Yang-Mills and other gauge theories in quantum field theory

Software:

SDPB; PyCFTBoot

References:

[1] Rattazzi, R.; Rychkov, VS; Tonni, E.; Vichi, A., Bounding scalar operator dimensions in 4D CFT, JHEP, 12, 031 (2008) · Zbl 1329.81324 · doi:10.1088/1126-6708/2008/12/031
[2] Dolan, FA; Osborn, H., Conformal four point functions and the operator product expansion, Nucl. Phys. B, 599, 459 (2001) · Zbl 1097.81734 · doi:10.1016/S0550-3213(01)00013-X
[3] Dolan, FA; Osborn, H., Conformal partial waves and the operator product expansion, Nucl. Phys. B, 678, 491 (2004) · Zbl 1097.81735 · doi:10.1016/j.nuclphysb.2003.11.016
[4] D. Poland, S. Rychkov and A. Vichi, The Conformal Bootstrap: Theory, Numerical Techniques, and Applications, Rev. Mod. Phys.91 (2019) 015002 [arXiv:1805.04405] [INSPIRE].
[5] A. Bissi, A. Sinha and X. Zhou, Selected Topics in Analytic Conformal Bootstrap: A Guided Journey, arXiv:2202.08475 [INSPIRE].
[6] T. Hartman, D. Mazac, D. Simmons-Duffin and A. Zhiboedov, Snowmass White Paper: The Analytic Conformal Bootstrap, in 2022 Snowmass Summer Study, Seattle U.S.A, July 17-26 2022 [arXiv:2202.11012] [INSPIRE].
[7] Hellerman, S.; Orlando, D.; Reffert, S.; Watanabe, M., On the CFT Operator Spectrum at Large Global Charge, JHEP, 12, 071 (2015) · Zbl 1388.81672
[8] A. Monin, D. Pirtskhalava, R. Rattazzi and F.K. Seibold, Semiclassics, Goldstone Bosons and CFT data, JHEP06 (2017) 011 [arXiv:1611.02912] [INSPIRE]. · Zbl 1380.81350
[9] Gaumé, LA; Orlando, D.; Reffert, S., Selected topics in the large quantum number expansion, Phys. Rept., 933, 1 (2021) · Zbl 07408909 · doi:10.1016/j.physrep.2021.08.001
[10] Gribov, VN; Lipatov, LN, Deep inelastic e p scattering in perturbation theory, Sov. J. Nucl. Phys., 15, 438 (1972)
[11] V.N. Gribov and L.N. Lipatov, e^+e^−pair annihilation and deep inelastic e p scattering in perturbation theory, Sov. J. Nucl. Phys.15 (1972) 675 [INSPIRE].
[12] L.N. Lipatov, The parton model and perturbation theory, Sov. J. Nucl. Phys.20 (1975) 94 [INSPIRE].
[13] Altarelli, G.; Parisi, G., Asymptotic Freedom in Parton Language, Nucl. Phys. B, 126, 298 (1977) · doi:10.1016/0550-3213(77)90384-4
[14] Dokshitzer, YL, Calculation of the Structure Functions for Deep Inelastic Scattering and e^+e^−Annihilation by Perturbation Theory in Quantum Chromodynamics, Sov. Phys. JETP, 46, 641 (1977)
[15] Cornalba, L.; Costa, MS; Penedones, J., Deep Inelastic Scattering in Conformal QCD, JHEP, 03, 133 (2010) · Zbl 1271.81170 · doi:10.1007/JHEP03(2010)133
[16] A.V. Kotikov and L.N. Lipatov, DGLAP and BFKL equations in the N = 4 supersymmetric gauge theory, Nucl. Phys. B661 (2003) 19 [Erratum ibid.685 (2004) 405] [hep-ph/0208220] [INSPIRE]. · Zbl 1040.81062
[17] Brower, RC; Polchinski, J.; Strassler, MJ; Tan, C-I, The Pomeron and gauge/string duality, JHEP, 12, 005 (2007) · Zbl 1246.81224 · doi:10.1088/1126-6708/2007/12/005
[18] Costa, MS; Goncalves, V.; Penedones, J., Conformal Regge theory, JHEP, 12, 091 (2012) · Zbl 1397.81297 · doi:10.1007/JHEP12(2012)091
[19] Gromov, N.; Levkovich-Maslyuk, F.; Sizov, G., Quantum Spectral Curve and the Numerical Solution of the Spectral Problem in AdS_5/CFT_4, JHEP, 06, 036 (2016) · Zbl 1342.83035 · doi:10.1007/JHEP06(2016)036
[20] Aprile, F.; Drummond, JM; Heslop, P.; Paul, H., Quantum Gravity from Conformal Field Theory, JHEP, 01, 035 (2018) · Zbl 1384.83011 · doi:10.1007/JHEP01(2018)035
[21] Chester, SM, Genus-2 holographic correlator on AdS_5× S^5from localization, JHEP, 04, 193 (2020) · Zbl 1436.83068 · doi:10.1007/JHEP04(2020)193
[22] B.A. Kniehl and V.N. Velizhanin, Non-planar universal anomalous dimension of twist-two operators with general Lorentz spin at four loops in N = 4 SYM theory, Nucl. Phys. B968 (2021) 115429 [arXiv:2103.16420] [INSPIRE]. · Zbl 07408566
[23] Drummond, JM; Paul, H., Two-loop supergravity on AdS_5× S^5from CFT, JHEP, 08, 275 (2022) · Zbl 1522.83378 · doi:10.1007/JHEP08(2022)275
[24] Nachtmann, O., Positivity constraints for anomalous dimensions, Nucl. Phys. B, 63, 237 (1973) · doi:10.1016/0550-3213(73)90144-2
[25] Kehrein, SK, The Spectrum of critical exponents in (Φ^2)^2in two-dimensions theory in D = 4 − ϵ dimensions: Resolution of degeneracies and hierarchical structures, Nucl. Phys. B, 453, 777 (1995) · doi:10.1016/0550-3213(95)00375-3
[26] Fitzpatrick, AL; Kaplan, J.; Poland, D.; Simmons-Duffin, D., The Analytic Bootstrap and AdS Superhorizon Locality, JHEP, 12, 004 (2013) · Zbl 1342.83239 · doi:10.1007/JHEP12(2013)004
[27] Komargodski, Z.; Zhiboedov, A., Convexity and Liberation at Large Spin, JHEP, 11, 140 (2013) · doi:10.1007/JHEP11(2013)140
[28] Alday, LF; Maldacena, JM, Comments on operators with large spin, JHEP, 11, 019 (2007) · Zbl 1245.81257 · doi:10.1088/1126-6708/2007/11/019
[29] C.G. Callan Jr. and D.J. Gross, Bjorken scaling in quantum field theory, Phys. Rev. D8 (1973) 4383 [INSPIRE].
[30] Parisi, G., How to measure the dimension of the parton field, Nucl. Phys. B, 59, 641 (1973) · doi:10.1016/0550-3213(73)90666-4
[31] Y.L. Dokshitzer, V.A. Khoze and S.I. Troian, Specific features of heavy quark production. LPHD approach to heavy particle spectra, Phys. Rev. D53 (1996) 89 [hep-ph/9506425] [INSPIRE].
[32] Basso, B.; Korchemsky, GP, Anomalous dimensions of high-spin operators beyond the leading order, Nucl. Phys. B, 775, 1 (2007) · Zbl 1117.81366 · doi:10.1016/j.nuclphysb.2007.03.044
[33] Alday, LF; Bissi, A.; Lukowski, T., Large spin systematics in CFT, JHEP, 11, 101 (2015) · Zbl 1388.81752
[34] Alday, LF; Zhiboedov, A., Conformal Bootstrap With Slightly Broken Higher Spin Symmetry, JHEP, 06, 091 (2016) · Zbl 1388.81753 · doi:10.1007/JHEP06(2016)091
[35] Alday, LF; Zhiboedov, A., An Algebraic Approach to the Analytic Bootstrap, JHEP, 04, 157 (2017) · Zbl 1378.81097 · doi:10.1007/JHEP04(2017)157
[36] Simmons-Duffin, D., The Lightcone Bootstrap and the Spectrum of the 3d Ising CFT, JHEP, 03, 086 (2017) · Zbl 1377.81184 · doi:10.1007/JHEP03(2017)086
[37] L.F. Alday, Large Spin Perturbation Theory for Conformal Field Theories, Phys. Rev. Lett.119 (2017) 111601 [arXiv:1611.01500] [INSPIRE].
[38] Alday, LF, Solving CFTs with Weakly Broken Higher Spin Symmetry, JHEP, 10, 161 (2017) · Zbl 1383.81149 · doi:10.1007/JHEP10(2017)161
[39] Caron-Huot, S., Analyticity in Spin in Conformal Theories, JHEP, 09, 078 (2017) · Zbl 1382.81173 · doi:10.1007/JHEP09(2017)078
[40] Jaroszewicz, T., Gluonic Regge Singularities and Anomalous Dimensions in QCD, Phys. Lett. B, 116, 291 (1982) · doi:10.1016/0370-2693(82)90345-8
[41] A.V. Kotikov and L.N. Lipatov, NLO corrections to the BFKL equation in QCD and in supersymmetric gauge theories, Nucl. Phys. B582 (2000) 19 [hep-ph/0004008] [INSPIRE].
[42] Balitsky, II; Braun, VM, Evolution Equations for QCD String Operators, Nucl. Phys. B, 311, 541 (1989) · doi:10.1016/0550-3213(89)90168-5
[43] V.M. Braun, G.P. Korchemsky and D. Müller, The Uses of conformal symmetry in QCD, Prog. Part. Nucl. Phys.51 (2003) 311 [hep-ph/0306057] [INSPIRE].
[44] I. Balitsky, V. Kazakov and E. Sobko, Two-point correlator of twist-2 light-ray operators in N = 4 SYM in BFKL approximation, arXiv:1310.3752 [INSPIRE].
[45] Kravchuk, P.; Simmons-Duffin, D., Light-ray operators in conformal field theory, JHEP, 11, 102 (2018) · Zbl 1404.81234 · doi:10.1007/JHEP11(2018)102
[46] Costa, MS; Hansen, T.; Penedones, J., Bounds for OPE coefficients on the Regge trajectory, JHEP, 10, 197 (2017) · Zbl 1383.81197 · doi:10.1007/JHEP10(2017)197
[47] J. Liu, D. Meltzer, D. Poland and D. Simmons-Duffin, The Lorentzian inversion formula and the spectrum of the 3d O(2) CFT, JHEP09 (2020) 115 [Erratum ibid.01 (2021) 206] [arXiv:2007.07914] [INSPIRE]. · Zbl 1454.81199
[48] S. Caron-Huot, Y. Gobeil and Z. Zahraee, The leading trajectory in the 2 + 1 D Ising CFT, arXiv:2007.11647 [INSPIRE].
[49] S. Caron-Huot, M. Koloğlu, P. Kravchuk, D. Meltzer and D. Simmons-Duffin, Detectors in weakly-coupled field theories, arXiv:2209.00008 [INSPIRE].
[50] Carmi, D.; Caron-Huot, S., A Conformal Dispersion Relation: Correlations from Absorption, JHEP, 09, 009 (2020) · Zbl 1454.81182 · doi:10.1007/JHEP09(2020)009
[51] Albayrak, S.; Meltzer, D.; Poland, D., More Analytic Bootstrap: Nonperturbative Effects and Fermions, JHEP, 08, 040 (2019) · Zbl 1421.81104
[52] A. Atanasov, A. Hillman, D. Poland, J. Rong and N. Su, Precision bootstrap for the \(\mathcal{N} = 1\) super-Ising model, JHEP08 (2022) 136 [arXiv:2201.02206] [INSPIRE]. · Zbl 1522.81582
[53] Lemos, M.; van Rees, BC; Zhao, X., Regge trajectories for the (2, 0) theories, JHEP, 01, 022 (2022) · Zbl 1521.81319 · doi:10.1007/JHEP01(2022)022
[54] N. Su, The Hybrid Bootstrap, arXiv:2202.07607 [INSPIRE].
[55] Fitzpatrick, AL; Kaplan, J., Unitarity and the Holographic S-matrix, JHEP, 10, 032 (2012) · Zbl 1397.83037 · doi:10.1007/JHEP10(2012)032
[56] Alday, LF; Caron-Huot, S., Gravitational S-matrix from CFT dispersion relations, JHEP, 12, 017 (2018) · Zbl 1405.81114 · doi:10.1007/JHEP12(2018)017
[57] Aharony, O.; Alday, LF; Bissi, A.; Yacoby, R., The Analytic Bootstrap for Large N Chern-Simons Vector Models, JHEP, 08, 166 (2018) · Zbl 1396.58019
[58] Alday, LF; Bissi, A.; Perlmutter, E., Genus-One String Amplitudes from Conformal Field Theory, JHEP, 06, 010 (2019) · Zbl 1416.81132 · doi:10.1007/JHEP06(2019)010
[59] Alday, LF, On genus-one string amplitudes on AdS_5 × S^5, JHEP, 04, 005 (2021) · Zbl 1462.83061 · doi:10.1007/JHEP04(2021)005
[60] Li, Y-Z, Heavy-light Bootstrap from Lorentzian Inversion Formula, JHEP, 07, 046 (2020) · doi:10.1007/JHEP07(2020)046
[61] Alday, LF; Chester, SM; Raj, H., 6d (2, 0) and M-theory at 1-loop, JHEP, 01, 133 (2021) · doi:10.1007/JHEP01(2021)133
[62] Binder, DJ; Chester, SM; Jerdee, M., ABJ Correlators with Weakly Broken Higher Spin Symmetry, JHEP, 04, 242 (2021) · Zbl 1462.81135 · doi:10.1007/JHEP04(2021)242
[63] Alday, LF; Chester, SM; Raj, H., ABJM at strong coupling from M-theory, localization, and Lorentzian inversion, JHEP, 02, 005 (2022) · Zbl 1522.81441 · doi:10.1007/JHEP02(2022)005
[64] Alday, LF; Henriksson, J.; van Loon, M., Taming the ϵ-expansion with large spin perturbation theory, JHEP, 07, 131 (2018) · Zbl 1395.81197 · doi:10.1007/JHEP07(2018)131
[65] J. Henriksson and M. Van Loon, Critical O(N) model to order ϵ^4from analytic bootstrap, J. Phys. A52 (2019) 025401 [arXiv:1801.03512] [INSPIRE]. · Zbl 1422.81156
[66] Alday, LF; Henriksson, J.; van Loon, M., An alternative to diagrams for the critical O(N) model: dimensions and structure constants to order 1/N^2, JHEP, 01, 063 (2020) · Zbl 1434.81091 · doi:10.1007/JHEP01(2020)063
[67] Henriksson, J.; Kousvos, SR; Stergiou, A., Analytic and Numerical Bootstrap of CFTs with O(m) × O(n) Global Symmetry in 3D, SciPost Phys., 9, 035 (2020) · doi:10.21468/SciPostPhys.9.3.035
[68] Henriksson, J.; Stergiou, A., Perturbative and Nonperturbative Studies of CFTs with MN Global Symmetry, SciPost Phys., 11, 015 (2021) · doi:10.21468/SciPostPhys.11.1.015
[69] V. Goncalves, Skeleton expansion and large spin bootstrap for ϕ^3theory, arXiv:1809.09572 [INSPIRE].
[70] J. Henriksson, Analytic bootstrap for perturbative conformal field theories, Ph.D. Thesis, University of Oxford (2020) arXiv:2008.12600 [INSPIRE].
[71] Iliesiu, L.; Koloğlu, M.; Mahajan, R.; Perlmutter, E.; Simmons-Duffin, D., The Conformal Bootstrap at Finite Temperature, JHEP, 10, 070 (2018) · Zbl 1402.81226 · doi:10.1007/JHEP10(2018)070
[72] Lemos, M.; Liendo, P.; Meineri, M.; Sarkar, S., Universality at large transverse spin in defect CFT, JHEP, 09, 091 (2018) · Zbl 1398.81215 · doi:10.1007/JHEP09(2018)091
[73] Liendo, P.; Linke, Y.; Schomerus, V., A Lorentzian inversion formula for defect CFT, JHEP, 08, 163 (2020) · Zbl 1454.81198 · doi:10.1007/JHEP08(2020)163
[74] J. Barrat, A. Gimenez-Grau and P. Liendo, Bootstrapping holographic defect correlators in \(\mathcal{N} = 4\) super Yang-Mills, JHEP04 (2022) 093 [arXiv:2108.13432] [INSPIRE]. · Zbl 1522.81450
[75] Wilson, KG; Fisher, ME, Critical exponents in 3.99 dimensions, Phys. Rev. Lett., 28, 240 (1972) · doi:10.1103/PhysRevLett.28.240
[76] J. Henriksson, The critical O(N) CFT: Methods and conformal data, arXiv:2201.09520 [INSPIRE].
[77] Kompaniets, M.; Panzer, E., Renormalization group functions of ϕ^4theory in the MS-scheme to six loops, PoS, LL2016, 038 (2016)
[78] M.V. Kompaniets and E. Panzer, Minimally subtracted six loop renormalization of O(n)-symmetric ϕ^4theory and critical exponents, Phys. Rev. D96 (2017) 036016 [arXiv:1705.06483] [INSPIRE].
[79] O. Schnetz, Numbers and Functions in Quantum Field Theory, Phys. Rev. D97 (2018) 085018 [arXiv:1606.08598] [INSPIRE].
[80] O. Schnetz, Eightloop gamma in ϕ^4, Emmy Noether seminar, Erlangen Germany, April 30 2021.
[81] Bednyakov, A.; Pikelner, A., Six-loop β-functions in general scalar theory, JHEP, 04, 233 (2021) · doi:10.1007/JHEP04(2021)233
[82] Gopakumar, R.; Kaviraj, A.; Sen, K.; Sinha, A., A Mellin space approach to the conformal bootstrap, JHEP, 05, 027 (2017) · Zbl 1380.81320 · doi:10.1007/JHEP05(2017)027
[83] R. Gopakumar, A. Kaviraj, K. Sen and A. Sinha, Conformal Bootstrap in Mellin Space, Phys. Rev. Lett.118 (2017) 081601 [arXiv:1609.00572] [INSPIRE]. · Zbl 1380.81320
[84] Dey, P.; Kaviraj, A.; Sinha, A., Mellin space bootstrap for global symmetry, JHEP, 07, 019 (2017) · Zbl 1380.81308 · doi:10.1007/JHEP07(2017)019
[85] Carmi, D.; Penedones, J.; Silva, JA; Zhiboedov, A., Applications of dispersive sum rules: ε-expansion and holography, SciPost Phys., 10, 145 (2021) · doi:10.21468/SciPostPhys.10.6.145
[86] Trinh, A-K, Mixed correlator dispersive CFT sum rules, JHEP, 03, 032 (2022) · Zbl 1522.81540 · doi:10.1007/JHEP03(2022)032
[87] Rychkov, S.; Tan, ZM, The ϵ-expansion from conformal field theory, J. Phys. A, 48, 29FT01 (2015) · Zbl 1320.81082 · doi:10.1088/1751-8113/48/29/29FT01
[88] Giombi, S.; Kirilin, V., Anomalous dimensions in CFT with weakly broken higher spin symmetry, JHEP, 11, 068 (2016) · Zbl 1390.81510 · doi:10.1007/JHEP11(2016)068
[89] Liendo, P., Revisiting the dilatation operator of the Wilson-Fisher fixed point, Nucl. Phys. B, 920, 368 (2017) · Zbl 1364.81150 · doi:10.1016/j.nuclphysb.2017.04.020
[90] S. El-Showk, M. Paulos, D. Poland, S. Rychkov, D. Simmons-Duffin and A. Vichi, Conformal Field Theories in Fractional Dimensions, Phys. Rev. Lett.112 (2014) 141601 [arXiv:1309.5089] [INSPIRE]. · Zbl 1310.82013
[91] Behan, C., PyCFTBoot: A flexible interface for the conformal bootstrap, Commun. Comput. Phys., 22, 1 (2017) · Zbl 1488.65136 · doi:10.4208/cicp.OA-2016-0107
[92] Cappelli, A.; Maffi, L.; Okuda, S., Critical Ising Model in Varying Dimension by Conformal Bootstrap, JHEP, 01, 161 (2019) · Zbl 1409.81112 · doi:10.1007/JHEP01(2019)161
[93] Sirois, B., Navigating through the O(N) archipelago, SciPost Phys., 13, 081 (2022) · doi:10.21468/SciPostPhys.13.4.081
[94] J.L. Cardy, Scaling and renormalization in statistical physics, Cambridge University Press (1996) [DOI]. · Zbl 0914.60002
[95] Z. Komargodski and D. Simmons-Duffin, The Random-Bond Ising Model in 2.01 and 3 Dimensions, J. Phys. A50 (2017) 154001 [arXiv:1603.04444] [INSPIRE]. · Zbl 1366.82009
[96] A. Amoretti and N. Magnoli, Conformal perturbation theory, Phys. Rev. D96 (2017) 045016 [arXiv:1705.03502] [INSPIRE].
[97] Kos, F.; Poland, D.; Simmons-Duffin, D., Bootstrapping Mixed Correlators in the 3D Ising Model, JHEP, 11, 109 (2014) · Zbl 1392.81202 · doi:10.1007/JHEP11(2014)109
[98] Simmons-Duffin, D., A Semidefinite Program Solver for the Conformal Bootstrap, JHEP, 06, 174 (2015) · doi:10.1007/JHEP06(2015)174
[99] Kos, F.; Poland, D.; Simmons-Duffin, D.; Vichi, A., Precision Islands in the Ising and O(N) Models, JHEP, 08, 036 (2016) · Zbl 1390.81227 · doi:10.1007/JHEP08(2016)036
[100] Kehrein, S.; Wegner, F.; Pismak, Y., Conformal symmetry and the spectrum of anomalous dimensions in the N vector model in four epsilon dimensions, Nucl. Phys. B, 402, 669 (1993) · Zbl 1043.81637 · doi:10.1016/0550-3213(93)90124-8
[101] Kehrein, SK; Wegner, F., The Structure of the spectrum of anomalous dimensions in the N vector model in (4-epsilon)-dimensions, Nucl. Phys. B, 424, 521 (1994) · Zbl 0990.81565 · doi:10.1016/0550-3213(94)90406-5
[102] M. Hogervorst, S. Rychkov and B.C. van Rees, Unitarity violation at the Wilson-Fisher fixed point in 4 − ϵ dimensions, Phys. Rev. D93 (2016) 125025 [arXiv:1512.00013] [INSPIRE].
[103] J. Maldacena and A. Zhiboedov, Constraining conformal field theories with a slightly broken higher spin symmetry, Class. Quant. Grav.30 (2013) 104003 [arXiv:1204.3882] [INSPIRE]. · Zbl 1269.83053
[104] S. Rychkov, Conformal bootstrap in 4 − ϵ dimensions, in Problem set prepared for the Mathematica Summer School in Theoretical Physics, ICTP, Trieste Italy, March 2013.
[105] Y.-C. He, J. Rong and N. Su, work in progress.
[106] He, Y-C; Rong, J.; Su, N., Conformal bootstrap bounds for the U(1) Dirac spin liquid and N = 7 Stiefel liquid, SciPost Phys., 13, 014 (2022) · doi:10.21468/SciPostPhys.13.2.014
[107] F.A. Dolan and H. Osborn, Conformal Partial Waves: Further Mathematical Results, arXiv:1108.6194 [INSPIRE]. · Zbl 1097.81735
[108] Henriksson, J.; Lukowski, T., Perturbative Four-Point Functions from the Analytic Conformal Bootstrap, JHEP, 02, 123 (2018) · Zbl 1387.81320 · doi:10.1007/JHEP02(2018)123
[109] Usyukina, NI; Davydychev, AI, An Approach to the evaluation of three and four point ladder diagrams, Phys. Lett. B, 298, 363 (1993) · doi:10.1016/0370-2693(93)91834-A
[110] Heemskerk, I.; Penedones, J.; Polchinski, J.; Sully, J., Holography from Conformal Field Theory, JHEP, 10, 079 (2009) · doi:10.1088/1126-6708/2009/10/079
[111] Fitzpatrick, AL; Katz, E.; Poland, D.; Simmons-Duffin, D., Effective Conformal Theory and the Flat-Space Limit of AdS, JHEP, 07, 023 (2011) · Zbl 1298.81212 · doi:10.1007/JHEP07(2011)023
[112] M. Reehorst, M. Refinetti and A. Vichi, Bootstrapping traceless symmetric O(N) scalars, arXiv:2012.08533 [INSPIRE].
[113] Roumpedakis, K., Leading Order Anomalous Dimensions at the Wilson-Fisher Fixed Point from CFT, JHEP, 07, 109 (2017) · Zbl 1380.81359 · doi:10.1007/JHEP07(2017)109
[114] Bissi, A.; Dey, P.; Hansen, T., Dispersion Relation for CFT Four-Point Functions, JHEP, 04, 092 (2020) · Zbl 1436.81111 · doi:10.1007/JHEP04(2020)092
[115] S.E. Derkachov, J.A. Gracey and A.N. Manashov, Four loop anomalous dimensions of gradient operators in ϕ^4theory, Eur. Phys. J. C2 (1998) 569 [hep-ph/9705268] [INSPIRE].
[116] Chester, SM, Carving out OPE space and precise O(2) model critical exponents, JHEP, 06, 142 (2020) · Zbl 1437.81076 · doi:10.1007/JHEP06(2020)142
[117] S.M. Chester et al., Bootstrapping Heisenberg magnets and their cubic instability, Phys. Rev. D104 (2021) 105013 [arXiv:2011.14647] [INSPIRE].
[118] Kousvos, SR; Stergiou, A., Bootstrapping mixed MN correlators in 3D, SciPost Phys., 12, 206 (2022) · doi:10.21468/SciPostPhys.12.6.206
[119] K.G. Wilson and J.B. Kogut, The Renormalization group and the ϵ-expansion, Phys. Rept.12 (1974) 75 [INSPIRE].
[120] Lukowski, T.; Rej, A.; Velizhanin, VN, Five-Loop Anomalous Dimension of Twist-Two Operators, Nucl. Phys. B, 831, 105 (2010) · Zbl 1204.81147 · doi:10.1016/j.nuclphysb.2010.01.008
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.