×

Anomalous dimensions of high-spin operators beyond the leading order. (English) Zbl 1117.81366

Summary: Anomalous dimensions of Wilson operators with large Lorentz spin scale logarithmically with the spin. Recent multi-loop QCD calculations of twist-two anomalous dimensions revealed the existence of interesting structure of the subleading corrections suppressed by powers of the Lorentz spin. We argue that this structure is a manifestation of the ‘self-tuning’ property of the multi-loop anomalous dimensions-in a conformal gauge theory, the anomalous dimension of Wilson operators is a function of their conformal spin which is modified in higher loops by an amount proportional to the anomalous dimension. Making use of the parity property of this function and incorporating the beta-function contribution, we demonstrate the existence of (infinite number of) relations between subleading corrections to the twist-two anomalous dimensions in QCD and its supersymmetric extensions. They imply that the subleading corrections to the anomalous dimensions suppressed by odd powers of the conformal spin can be expressed in terms of the lower-loops corrections suppressed by smaller even powers of the spin. We show that these relations hold true in QCD to all loops in the large \(\beta _{0}\) limit. In the \(\mathcal N=4\) SYM theory, we employ the AdS/CFT correspondence to argue that the same relations survive in the strong coupling regime for higher-twist scalar operators dual to a folded string rotating on the AdS\(_{3}\times \mathrm S^{1}\).

MSC:

81V05 Strong interaction, including quantum chromodynamics
81T40 Two-dimensional field theories, conformal field theories, etc. in quantum mechanics
81T13 Yang-Mills and other gauge theories in quantum field theory

References:

[1] Witten, E., Adv. Theor. Math. Phys., 2, 253 (1998) · Zbl 0914.53048
[2] Moch, S.; Vermaseren, J. A.M.; Vogt, A., Nucl. Phys. B, 688, 101 (2004) · Zbl 1149.81371
[3] Vogt, A.; Moch, S.; Vermaseren, J. A.M., Nucl. Phys. B, 691, 129 (2004) · Zbl 1109.81374
[4] Korchemsky, G. P.; Marchesini, G., Nucl. Phys. B, 406, 225 (1993)
[5] Marchesini, G.
[6] Dokshitzer, Yu. L.; Khoze, V. A.; Troian, S. I., Phys. Rev. D, 53, 89 (1996)
[7] Belitsky, A. V.; Korchemsky, G. P.; Müller, D.
[8] Gribov, V. N.; Lipatov, L. N., Sov. J. Nucl. Phys., 15, 438 (1972)
[9] Altarelli, G.; Parisi, G., Nucl. Phys. B, 126, 298 (1977)
[10] Dokshitzer, Yu. L., Sov. Phys. JETP, 46, 641 (1977)
[11] Jaffe, R. L.; Soldate, M., Phys. Rev. D, 26, 49 (1982)
[12] Brock, R., Rev. Mod. Phys., 67, 157 (1995)
[13] Gribov, V. N.; Lipatov, L. N., Sov. J. Nucl. Phys., 15, 675 (1972)
[14] Drell, S. D.; Levy, D. J.; Yan, T. M., Phys. Rev. D, 1, 1617 (1970)
[15] Curci, G.; Furmanski, W.; Petronzio, R., Nucl. Phys. B, 175, 27 (1980)
[16] Furmanski, W.; Petronzio, R., Phys. Lett. B, 97, 437 (1980)
[17] Floratos, E. G.; Kounnas, C.; Lacaze, R., Phys. Lett. B, 98, 89 (1981), 285
[18] Stratmann, M.; Vogelsang, W., Nucl. Phys. B, 496, 41 (1997)
[19] Stratmann, M.; Vogelsang, W., Phys. Rev. D, 65, 057502 (2002)
[20] Blumlein, J.; Ravindran, V.; van Neerven, W. L., Nucl. Phys. B, 586, 349 (2000)
[21] Mueller, A. H., Nucl. Phys. B, 228, 351 (1983)
[22] Mitov, A.; Moch, S.; Vogt, A., Phys. Lett. B, 638, 61 (2006)
[23] Bukhvostov, A. P.; Frolov, G. V.; Lipatov, L. N.; Kuraev, E. A., Nucl. Phys. B, 258, 601 (1985)
[24] Braun, V. M.; Korchemsky, G. P.; Müller, D., Prog. Part. Nucl. Phys., 51, 311 (2003)
[25] Ohrndorf, T., Nucl. Phys. B, 198, 26 (1982)
[26] Belitsky, A. V.; Müller, D., Nucl. Phys. B, 537, 397 (1999)
[27] Belitsky, A. V.; Korchemsky, G. P.; Müller, D., Nucl. Phys. B, 735, 17 (2006) · Zbl 1109.81074
[28] Vasiliev, A. N.; Pismak, Yu. M.; Khonkonen, Yu. R., Theor. Math. Phys., 50, 127 (1982)
[29] Vasil’ev, A. N., The Field Theoretic Renormalization Group in Critical Behavior Theory and Stochastic Dynamics (2004), Chapman & Hall/CRC · Zbl 1140.82019
[30] Gubser, S. S.; Klebanov, I. R.; Polyakov, A. M., Nucl. Phys. B, 636, 99 (2002) · Zbl 0996.81076
[31] Frolov, S.; Tseytlin, A. A., JHEP, 0206, 007 (2002)
[32] Vogelsang, W., Acta Phys. Pol. B, 29, 1189 (1998)
[33] Vogelsang, W., Phys. Rev. D, 54, 2023 (1996)
[34] Belitsky, A. V.; Derkachov, S. E.; Korchemsky, G. P.; Manashov, A. N., Nucl. Phys. B, 722, 191 (2005) · Zbl 1128.81322
[35] Brink, L.; Lindgren, O.; Nilsson, B. E., Phys. Lett. B, 123, 323 (1983)
[36] Sohnius, M. F., Phys. Rep., 128, 39 (1985)
[37] Dolan, F. A.; Osborn, H., Nucl. Phys. B, 629, 3 (2002) · Zbl 1039.81551
[38] Hayashigaki, A.; Kanazawa, Y.; Koike, Y., Phys. Rev. D, 56, 7350 (1997)
[39] Kotikov, A. V.; Lipatov, L. N.; Onishchenko, A. I.; Velizhanin, V. N., Phys. Lett. B, 632, 754 (2006), Erratum · Zbl 1247.81485
[40] Catani, S.; Marchesini, G.; Webber, B. R., Nucl. Phys. B, 349, 635 (1991)
[41] Gracey, J. A., Nucl. Phys. B, 480, 73 (1996)
[42] Gardi, E., JHEP, 0502, 053 (2005)
[43] Gracey, J. A., Nucl. Phys. B, 667, 242 (2003) · Zbl 1059.81577
[44] Bennett, J. F.; Gracey, J. A., Phys. Lett. B, 432, 209 (1998)
[45] Berenstein, D.; Maldacena, J. M.; Nastase, H., JHEP, 0204, 013 (2002)
[46] Tseytlin, A. A.
[47] Belitsky, A. V.; Braun, V. M.; Gorsky, A. S.; Korchemsky, G. P., Int. J. Mod. Phys. A, 19, 4715 (2004) · Zbl 1059.81164
[48] Beisert, N.; Frolov, S.; Staudacher, M.; Tseytlin, A. A., JHEP, 0310, 037 (2003)
[49] Kazakov, V. A.; Zarembo, K., JHEP, 0410, 060 (2004)
[50] Frolov, S.; Tirziu, A.; Tseytlin, A. A.
[51] Belitsky, A. V.; Gorsky, A. S.; Korchemsky, G. P., Nucl. Phys. B, 748, 24 (2006) · Zbl 1186.81100
[52] Sakai, K.; Satoh, Y.
[53] Derkachov, S. E.; Gracey, J. A.; Manashov, A. N., Eur. Phys. J. C, 2, 569 (1998)
[54] Lipatov, L. N., JETP Lett., 59, 596 (1994)
[55] Faddeev, L. D.; Korchemsky, G. P., Phys. Lett. B, 342, 311 (1995)
[56] Belitsky, A. V., Nucl. Phys. B, 558, 259 (1999)
[57] Beisert, N.; Staudacher, M., Nucl. Phys. B, 670, 439 (2003) · Zbl 1058.81581
[58] Korchemsky, G. P., Nucl. Phys. B, 498, 68 (1997) · Zbl 0979.81598
[59] Dokshitzer, Yu. L.; Marchesini, G.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.