×

Local estimates for vectorial Rudin-Osher-Fatemi type problems in one dimension. (English) Zbl 1534.49027

In this paper, the authors investigate local estimates for vectorial Rudin-Osher-Fatemi type problems in one dimension. Concretely, the authors obtain local estimates on the singular part of the variation measure of the minimizer in terms of the singular part of the variation measure of the datum.

MSC:

49N60 Regularity of solutions in optimal control
35B65 Smoothness and regularity of solutions to PDEs
35K59 Quasilinear parabolic equations
94A12 Signal theory (characterization, reconstruction, filtering, etc.)

References:

[1] B. Dacorogna, Direct methods in the calculus of variations. Vol. 78 of Applied Mathematical Sciences, 2nd edn. Springer, New York (2008). · Zbl 1140.49001
[2] C. Goffman and J. Serrin, Sublinear functions of measures and variational integrals. Duke Math. J. 31 (1964) 159-178. · Zbl 0123.09804 · doi:10.1215/S0012-7094-64-03115-1
[3] A. Chambolle and P.L. Lions, Image recovery via total variation minimization and related problems. Numer. Math. 76 (1997) 167-188. · Zbl 0874.68299 · doi:10.1007/s002110050258
[4] L. Rudin, S. Osher and E. Fatemi, Nonlinear total variation based noise removal algorithms. Physica D: Nonlinear Phenomena 60 (1992) 259-268. · Zbl 0780.49028 · doi:10.1016/0167-2789(92)90242-F
[5] M. Genzel, M. Marz and R. Seidel, Compressed sensing with 1D total variation: Breaking sample complexity barriers via non-uniform recovery. Inform. Inference 11 (2021) 203-250. · Zbl 1487.94040
[6] T. Miyata and Y. Sakai, Vectorized total variation defined by weighted l infinity norm for utilizing inter channel dependency, in 2012 19th IEEE International Conference on Image Processing (2012) 3057-3060. · doi:10.1109/ICIP.2012.6467545
[7] A. Chambolle and T. Pock, A first-order primal-dual algorithm for convex problems with applications to imaging. J. Math. Imaging Vis. 40 (2011) 120-145. · Zbl 1255.68217 · doi:10.1007/s10851-010-0251-1
[8] M. Bonforte and A. Figalli, Total variation flow and sign fast diffusion in one dimension. J. Differ. Equ. 252 (2012) 4455-4480. · Zbl 1242.35049 · doi:10.1016/j.jde.2012.01.003
[9] A. Briani, A. Chambolle, M. Novaga and G. Orlandi, On the gradient flow of a one-homogeneous functional. Confluentes Math. 3 (2011) 617-635. · Zbl 1238.49015 · doi:10.1142/S1793744211000461
[10] P.B. Mucha and P. Rybka, A note on a model system with sudden directional diffusion. J. Stat. Phys. 146 (2012) 975-988. · Zbl 1245.82020 · doi:10.1007/s10955-012-0446-5
[11] A. Nakayasu and P. Rybka, Integrability of the derivative of solutions to a singular one-dimensional parabolic problem. Topol. Methods Nonlinear Anal. 52 (2018) 239-257. · Zbl 1407.35120
[12] F. Alter, V. Caselles and A. Chambolle, Evolution of characteristic functions of convex sets in the plane by the minimizing total variation flow. Interfaces Free Bound. 7 (2005) 29-53. · Zbl 1084.49003 · doi:10.4171/IFB/112
[13] L. Ambrosio, N. Fusco and D. Pallara, Functions of bounded variation and free discontinuity problems. Oxford Mathematical Monographs. The Clarendon Press, Oxford University Press, New York (2000). · Zbl 0957.49001 · doi:10.1093/oso/9780198502456.001.0001
[14] V. Caselles, K. Jalalzai and M. Novaga, On the jump set of solutions of the total variation flow. Rend. Semin. Mat. Univ. Padova 130 (2013) 155-168. · Zbl 1284.49043 · doi:10.4171/RSMUP/130-5
[15] V. Caselles, A. Chambolle and M. Novaga, The discontinuity set of solutions of the TV denoising problem and some extensions. Multiscale Model. Simul. 6 (2007) 879-894. · Zbl 1145.49024 · doi:10.1137/070683003
[16] T. Valkonen, The jump set under geometric regularization. Part 1: basic technique and first-order denoising. SIAM J. Math. Anal. 47 (2015) 2587-2629. · Zbl 1325.49053 · doi:10.1137/140976248
[17] S. Moll, The anisotropic total variation flow. Math. Ann. 332 (2005) 177-218. · Zbl 1109.35061 · doi:10.1007/s00208-004-0624-0
[18] M. Lasica, S. Moll and P.B. Mucha, Total variation denoising in l1 anisotropy. SIAM J. Imaging Sci. 10 (2017) 1691-1723. · Zbl 1451.94011 · doi:10.1137/16M1103610
[19] M. Lasica and P. Rybka, Existence of W1,1 solutions to a class of variational problems with linear growth on convex domains. Indiana Univ. Math. J. 70 (2021) 2427-2450. · Zbl 1482.35060 · doi:10.1512/iumj.2021.70.9479
[20] L. Giacomelli and M. Lasica, A local estimate for vectorial total variation minimization in one dimension. Nonlinear Anal. 181 (2019) 141-146. · Zbl 1422.49005 · doi:10.1016/j.na.2018.11.009
[21] G. Mercier, Continuity results for TV-minimizers. Indiana Univ. Math. J. 67 (2018) 1499-1545. · Zbl 1408.49038 · doi:10.1512/iumj.2018.67.7393
[22] A. Chambolle and M. Novaga, Existence and uniqueness for planar anisotropic and crystalline curvature flow, in Variational methods for evolving objects. Vol. 67 of Adv. Stud. Pure Math.. Math. Soc. Japan
[23] F. Demengel and R. Temam, Convex functions of a measure and applications. Indiana Univ. Math. J. 33 (1984) 673-709. · Zbl 0581.46036 · doi:10.1512/iumj.1984.33.33036
[24] L.C. Evans and R.F. Gariepy, Measure theory and fine properties of functions. Studies in Advanced Mathematics. CRC Press, Boca Raton, FL (1992). · Zbl 0804.28001
[25] Y. Reshetnyak, Weak convergence of completely additive vector functions on a set. Sibirski Mat. Zh. 9 (1968) 1386-1394. · Zbl 0169.18301
[26] R.T. Rockafellar, Convex analysis. Princeton Mathematical Series. Princeton University Press, Princeton, NJ (1970). · Zbl 0193.18401
[27] R. Schneider, Convex Bodies: the Brunn-Minkowski Theory. Encyclopedia of Mathematics and its Applications. Cambridge Univeristy Press (1993). · Zbl 0798.52001 · doi:10.1017/CBO9780511526282
[28] G. Bellettini, V. Caselles and M. Novaga, Explicit solutions of the eigenvalue problem – div (du/|du|) = u in R2. SIAM J. Math. Anal. 36 (2005) 1095-1129. · Zbl 1162.35379 · doi:10.1137/S0036141003430007
[29] M. Ghomi, The problem of optimal smoothing for convex functions. Proc. Amer. Math. Soc. 130 (2002) 2255-2259. · Zbl 0999.26008 · doi:10.1090/S0002-9939-02-06743-6
[30] G. Anzellotti, The Euler equation for functionals with linear growth. Trans. Amer. Math. Soc. 290 (1985) 483-501. · Zbl 0611.49018 · doi:10.1090/S0002-9947-1985-0792808-4
[31] H. Brézis, Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert. North-Holland Publishing Co., Amsterdam (1973). (50). · Zbl 0252.47055
[32] F. Andreu-Vaillo, V. Caselles and J.M. Mazón, Parabolic quasilinear equations minimizing linear growth functionals. Vol. 223 of Progress in Mathematics. Birkhäuser Verlag, Basel (2004). · Zbl 1053.35002
[33] S. Moll and F. Smarrazzo, The Neumann problem for one-dimensional parabolic equations with linear growth Lagrangian: evolution of singularities. J. Evol. Equ. 22 (2022). · Zbl 1498.35322 · doi:10.1007/s00028-022-00835-1
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.