×

Total variation flow and sign fast diffusion in one dimension. (English) Zbl 1242.35049

Summary: We consider the dynamics of the total variation flow (TVF) \(u_t = \operatorname{div} (Du/|Du|)\) and of the sign fast diffusion equation (SFDE) \(u_t = \Delta \operatorname{sign}(u)\) in one spatial dimension. We find the explicit dynamic and sharp asymptotic behaviour for the TVF, and we deduce the one for the SFDE by an explicit correspondence between the two equations.

MSC:

35B40 Asymptotic behavior of solutions to PDEs
35K59 Quasilinear parabolic equations
35K67 Singular parabolic equations
35K92 Quasilinear parabolic equations with \(p\)-Laplacian

References:

[1] Ambrosio, L.; Caselles, V.; Masnou, S.; Morel, J.-M., Connected components of sets of finite perimeter and applications to image processing, J. Eur. Math. Soc., 3, 39-92 (2001) · Zbl 0981.49024
[2] Ambrosio, L.; Fusco, N.; Pallara, D., Functions of Bounded Variation and Free Discontinuity Problems, Oxford Math. Monogr. (2000), The Clarendon Press/Oxford University Press: The Clarendon Press/Oxford University Press New York · Zbl 0957.49001
[3] Andreu, F.; Ballester, C.; Caselles, V., A parabolic quasilinear problem for linear growth functionals, Rev. Mat. Iberoamericana, 18, 135-185 (2002) · Zbl 1010.35063
[4] Andreu, F.; Caselles, V.; Diaz, J. I.; Mazon, J. M., Some qualitative properties for the total variation flow, J. Funct. Anal., 188, 2, 516-547 (2002) · Zbl 1042.35018
[5] Andreu, F.; Caselles, V.; Mazon, J. M., Parabolic Quasilinear Equations Minimizing Linear Growth Functionals, Progr. Math., vol. 223 (2004), Birkhäuser-Verlag: Birkhäuser-Verlag Basel, xiv+340 pp · Zbl 1053.35002
[6] Barenblatt, G. I.; Vázquez, J. L., Nonlinear diffusion and image contour enhancement, Interfaces Free Bound., 6, 31-54 (2004) · Zbl 1064.35212
[7] Bellettini, G.; Caselles, V.; Novaga, M., The total variation flow in \(R^N\), J. Differential Equations, 184, 2, 475-525 (2002) · Zbl 1036.35099
[8] Bellettini, G.; Caselles, V.; Novaga, M., Explicit solutions of the eigenvalue problem \(div(\frac{D u}{| D u |}) = u\) in \(R^2\), SIAM J. Math. Anal., 36, 1095-1129 (2005) · Zbl 1162.35379
[9] Caselles, V.; Chambolle, A.; Novaga, M., The discontinuity set of solutions of the TV denoising problem and some extensions, Multiscale Model. Simul., 6, 879-894 (2007) · Zbl 1145.49024
[10] Brezis, H., Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert, Notas Mat., vol. 50 (1973), North-Holland Publishing Co./American Elsevier Publishing Co., Inc.: North-Holland Publishing Co./American Elsevier Publishing Co., Inc. Amsterdam, London/New York, vi+183 pp. (in French) · Zbl 0252.47055
[11] Benilan, P.; Crandall, M. G., The continuous dependence on \(φ\) of solutions of \(u_t - \Delta \varphi(u) = 0\), Indiana Univ. Math. J., 30, 2, 161-177 (1981) · Zbl 0482.35012
[12] Benilan, P.; Crandall, M. G., Regularizing effects of homogeneous evolution equations, (Contributions to Analysis and Geometry. Contributions to Analysis and Geometry, Suppl. Am. J. Math. (1981), Johns Hopkins University Press: Johns Hopkins University Press Baltimore), 23-39 · Zbl 0556.35067
[13] Caselles, V.; Chambolle, A.; Novaga, M., Regularity for solutions of the total variation denoising problem, Rev. Mat. Iberoamericana, 27, 1, 233-252 (2011) · Zbl 1228.94005
[14] Esteban, J. R.; Rodriguez, A.; Vázquez, J. L., A nonlinear heat equation with singular diffusivity, Comm. Partial Differential Equations, 13, 8, 985-1039 (1988) · Zbl 0686.35066
[15] Giga, M.-H.; Giga, Y., Evolving graphs by singular weighted curvature, Arch. Ration. Mech. Anal., 141, 117-198 (1998) · Zbl 0896.35069
[16] Giga, M.-H.; Giga, Y., Very singular diffusion equations: second and fourth order problems, Japan J. Indust. Appl. Math., 27, 323-345 (2010) · Zbl 1213.35274
[17] Giga, M.-H.; Giga, Y.; Kobayashi, R., Very singular diffusion equations, (Maruyama, M.; Sunada, T., Proc. of the Last Taniguchi Symposium. Proc. of the Last Taniguchi Symposium, Adv. Stud. Pure Math., vol. 31 (2001)), 93-125 · Zbl 1002.35074
[18] Giga, Y.; Kohn, R., Scale-invariant extinction time estimates for some singular diffusion equations, Discrete Contin. Dyn. Syst., 30, 2, 509-535 (2011) · Zbl 1223.35211
[19] K. Kielak, P. Boguslaw Mucha, P. Rybka, Almost classical solutions to the total variation flow, preprint, arXiv:1106.5369v1; K. Kielak, P. Boguslaw Mucha, P. Rybka, Almost classical solutions to the total variation flow, preprint, arXiv:1106.5369v1 · Zbl 1263.35148
[20] Iagar, R.; Sánchez, A.; Vázquez, J. L., Radial equivalence for the two basic nonlinear degenerate diffusion equations, J. Math. Pures Appl., 89, 1, 1-24 (2008) · Zbl 1139.35067
[21] Rodriguez, A.; Vázquez, J. L., A well-posed problem in singular Fickian diffusion, Arch. Ration. Mech. Anal., 110, 2, 141-163 (1990) · Zbl 0695.76043
[22] Rodriguez, A.; Vázquez, J. L., Obstructions to existence in fast-diffusion equations, J. Differential Equations, 184, 2, 348-385 (2002) · Zbl 1007.35042
[23] Rudin, L. I.; Osher, S.; Fatemi, E., Nonlinear total variation based noise removal algorithms, Phys. D, 60, 259-268 (1992) · Zbl 0780.49028
[24] Vázquez, J. L., Two nonlinear diffusion equation with finite speed of propagation, (Problems Involving Change of Type. Problems Involving Change of Type, Stuttgart, 1988. Problems Involving Change of Type. Problems Involving Change of Type, Stuttgart, 1988, Lecture Notes in Phys., vol. 359 (1990), Springer: Springer Berlin), 197-206 · Zbl 0739.35031
[25] Vázquez, J. L., Smoothing and Decay Estimates for Nonlinear Diffusion Equations, Oxford Lecture Ser. Math. Appl., vol. 33 (2006), Oxford University Press · Zbl 1113.35004
[26] Vázquez, J. L., The Porous Medium Equation. Mathematical Theory, Oxford Math. Monogr. (2007), Oxford University Press: Oxford University Press Oxford · Zbl 1107.35003
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.