×

Integrability of the derivative of solutions to a singular one-dimensional parabolic problem. (English) Zbl 1407.35120

Summary: We study integrability of the derivative of a solution to a singular one-dimensional parabolic equation with initial data in \(W^{1,1}\). In order to avoid additional difficulties we consider only the periodic boundary conditions. The problem we study is a gradient flow of a convex, linear growth variational functional. We also prove a similar result for the elliptic companion problem, i.e. the time semidiscretization.

MSC:

35K65 Degenerate parabolic equations
35K67 Singular parabolic equations

References:

[1] L. Ambrosio, N. Fusco and D. Pallara, Functions of bounded variation and free discontinuity problems, Oxford Mathematical Monographs.,The Clarendon Press, Oxford University Press, New York, 2000. · Zbl 0957.49001
[2] L. Beck, M. Bulíček, J. Málek and E. Süli, On the existence of integrable solutions to nonlinear elliptic systems and variational problems with linear growth, Arch. Ration. Mech. Anal. 225 (2017), 717-769. · Zbl 1375.35164
[3] L. Beck, M. Bulíček and E.Maringová, Globally lipschitz minimizers for variational problems with linear growth, https://arxiv.org/abs/1609.07601. · Zbl 1418.35179
[4] G. Bellettini, M. Novaga and G. Orlandi, Eventual regularity for the parabolic minimal surface equation, Discrete Contin. Dyn. Syst. 35 (2015), no. 12, 5711-5723. · Zbl 1334.35093 · doi:10.3934/dcds.2015.35.5711
[5] H. Brezis, Operateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert, North-Holland Mathematics Studies, No. 5; Notas de Matematica (50), North-Holland Publishing Co., Amsterdam, London, 1973. · Zbl 0252.47055
[6] V.Caselles, A.Chambolle and M. Novaga, The discontinuity set of solutions of the TV denoising problem and some extensions, Multiscale Model. Simul. 6 (2007), no. 3, 879-894. · Zbl 1145.49024 · doi:10.1137/070683003
[7] V.Caselles, A.Chambolle and M. Novaga, Regularity for solutions of the total variation denoising problem, Rev. Mat. Iberoam. 27 (2011), no. 1, 233-252. · Zbl 1228.94005 · doi:10.4171/RMI/634
[8] O.A. Ladyženskaja, V.A. Solonnikov and N.N. Ural’ceva, Linear and Quasilinear Equations of Parabolic Type, Am. Math. Soc., Providence, R.I., 1968. · Zbl 0174.15403
[9] M. Matusik, and P. Rybka, Oscillating facets, Port. Math. 73, (2016), 1-40. · Zbl 1375.35262 · doi:10.4171/PM/1974
[10] P.B. Mucha and P. Rybka, Well-posedness of sudden directional diffusion equations, Math. Meth. Appl. Sci. 36, (2013), 2359-2370. · Zbl 1280.35070 · doi:10.1002/mma.2759
[11] P.B. Mucha and P. Rybka, A caricature of a singular curvature flow in the plane, Nonlinearity 21 (2008), 2281-2316. · Zbl 1160.35436 · doi:10.1088/0951-7715/21/10/005
[12] A. Nakayasu and P. Rybka, Energy solutions to one-dimensional singular parabolic problems with \(\rom{BV}\) data are viscosity solutions, Mathematics for Nonlinear Phenomena: Analysis and Computation, Proceedings in Honor of Professor Yoshikazu Giga’s 60th birthday, (Y. Maekawa, Sh. Jimbo, eds.), Springer Proceedings in Mathematics and Statistics, 2017, 195-214. · Zbl 1387.35372
[13] M.M. Rao and Z.D. Ren, Theory of Orlicz Spaces, Monographs and Textbooks in Pure and Applied Mathematics, vol. 146, Marcel Dekker, Inc., New York, 1991. · Zbl 0724.46032
[14] L.I. Rudin, S.Osher and E. Fatemi, Nonlinear total variation based noise removal algorithms, Physica D 60 (1992), 259-268. · Zbl 0780.49028 · doi:10.1016/0167-2789(92)90242-F
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.