×

Optimal targeted mass screening in non-uniform populations with multiple tests and schemes. (English) Zbl 1533.92215

Summary: We study the problem of designing optimal targeted mass screening of non-uniform populations. Mass screening is an essential tool that is widely utilized in a variety of settings, for example, preventing infertility through screening programs for sexually transmitted diseases, ensuring a safe blood supply for transfusion, and mitigating the transmission of infectious diseases. The objective of mass screening is to maximize the overall classification accuracy under limited budget. In this paper, we address this problem by proposing a proactive optimization-based framework that factors in population heterogeneity, limited budget, different testing schemes, the availability of multiple assays, and imperfect assays. By analyzing the resulting optimization problem, we take advantage of the structure of the problem as a multi-dimensional fractional knapsack problem and identify an efficient globally convergent threshold-style solution scheme that fully characterizes an optimal solution across the entire budget spectrum. Using real-world data, we conduct a geographic-based nationwide case study on targeted COVID-19 screening in the United States. Our results reveal that the identified screening strategies substantially outperform conventional practices by significantly lowering misclassifications while utilizing the same amount of budget. Moreover, our results provide valuable managerial insights with regard to the distribution of testing schemes, assays, and budget across different geographic regions.
© 2023 Wiley Periodicals LLC.

MSC:

92D30 Epidemiology
90C26 Nonconvex programming, global optimization
Full Text: DOI

References:

[1] Abolnikov, L., & Dukhovny, A. (2003). Optimization in HIV screening problems. Journal of Applied Mathematics and Stochastic Analysis, 16(4), 361-374. · Zbl 1044.92027
[2] Abu‐Raddad, L. J., Dargham, S., Chemaitelly, H., Coyle, P. J., Al Kanaani, Z., Al Kuwari, E., Butt, A., Jeremijenko, A., Kaleeckal, A., & Latif, A. N. (2021). COVID‐19 risk score as a public health tool to guide targeted testing: A demonstration study in Qatar. medRxiv.
[3] Aizenman, N., Carlsne, A., & Talbot, R. (2022). Why The Pandemic Is 10 Times Worse Than You Think. https://www.npr.org/sections/health‐shots/2021/02/06/964527835/why‐the‐
[4] Akçay, Y., Li, H., & Xu, S. H. (2007). Greedy algorithm for the general multidimensional knapsack problem. Annals of Operations Research, 150(1), 17-29. · Zbl 1144.90466
[5] Alsing, J., Usher, N., & Crowley, P. J. (2020). Containing COVID‐19 outbreaks with spatially targeted short‐term lockdowns and mass‐testing. medRxiv.
[6] Andryukov, B. G., Besednova, N. N., Kuznetsova, T. A., & Fedyanina, L. N. (2021). Laboratory‐based resources for COVID‐19 diagnostics: Traditional tools and novel technologies. A perspective of personalized medicine. Journal of Personalized Medicine, 11(1), 42.
[7] Aprahamian, H., Bish, D. R., & Bish, E. K. (2016). Residual risk and waste in donated blood with pooled nucleic acid testing. Statistics in Medicine, 35(28), 5283-5301.
[8] Aprahamian, H., Bish, D. R., & Bish, E. K. (2019). Optimal risk‐based group testing. Management Science, 65(9), 4365-4384.
[9] Aprahamian, H., Bish, D. R., & Bish, E. K. (2020a). Optimal group testing: Structural properties and robust solutions, with application to public health screening. INFORMS Journal on Computing, 32(4), 895-911. · Zbl 07303813
[10] Aprahamian, H., Bish, E. K., & Bish, D. R. (2018). Adaptive risk‐based pooling in public health screening. IISE Transactions, 50(9), 753-766.
[11] Aprahamian, H., Bish, E. K., & Bish, D. R. (2020b). Static risk‐based group testing schemes under imperfectly observable risk. Stochastic Systems, 10(4), 361-390. · Zbl 1461.62077
[12] Aprahamian, H., & El‐Amine, H. (2022a). Optimal clustering of frequency data with application to disease risk categorization. IISE Transactions, 54(8), 728-740.
[13] Aprahamian, H., & El‐Amine, H. (2022b). Optimal screening of populations with heterogeneous risk profiles under the availability of multiple tests. INFORMS Journal on Computing, 34(1), 150-164. · Zbl 07549370
[14] ASH Clinical News. (2022). FDA Authorizes Low‐Cost Rapid‐Response Antigen Test for COVID‐19. https://ashpublications.org/ashclinicalnews/news/5282/FDA‐Authorizes‐Low‐Cost‐Rapid‐Response‐Antigen
[15] Bastani, H., Drakopoulos, K., Gupta, V., Vlachogiannis, J., Hadjicristodoulou, C., Lagiou, P., Magiorkinis, G., Paraskevis, D., & Tsiodras, S. (2021). Efficient and targeted COVID‐19 border testing via reinforcement learning. Nature, 599(7883), 108‐113.
[16] Bateman, A. C., Mueller, S., Guenther, K., & Shult, P. (2021). Assessing the dilution effect of specimen pooling on the sensitivity of SARS‐CoV‐2 PCR tests. Journal of Medical Virology, 93(3), 1568-1572.
[17] BEA Data. (2023). GDP by State. https://www.bea.gov/data/gdp/gdp‐state
[18] Berger, A., Nsoga, M. T. N., Perez‐Rodriguez, F. J., Aad, Y. A., Sattonnet‐Roche, P., Gayet‐Ageron, A., Jaksic, C., Torriani, G., Boehm, E., & Kronig, I. (2021). Diagnostic accuracy of two commercial SARS‐CoV‐2 antigen‐detecting rapid tests at the point of care in community‐based testing centers. PLoS One, 16(3), e0248921.
[19] Berking, T., Lorenz, S. G., Ulrich, A. B., Greiner, J., Kervio, E., Bremer, J., Wege, C., Kleinow, T., & Richert, C. (2021). The effect of pooling on the detection of the nucleocapsid protein of SARS‐CoV‐2 with rapid antigen tests. Diagnostics, 11(7), 1290.
[20] Bish, D. R., Bish, E. K., El‐Hajj, H., & Aprahamian, H. (2021). A robust pooled testing approach to expand COVID‐19 screening capacity. PLoS One, 16(2), e0246285.
[21] Black, M. S., Bilder, C. R., & Tebbs, J. M. (2015). Optimal retesting configurations for hierarchical group testing. Journal of the Royal Statistical Society: Series C (Applied Statistics), 64(4), 693-710.
[22] Bshouty, N. H., Bshouty‐Hurani, V. E., Haddad, G., Hashem, T., Khoury, F., & Sharafy, O. (2018). Adaptive group testing algorithms to estimate the number of defectives. In Algorithmic learning theory (pp. 93-110). PMLR. · Zbl 1405.68321
[23] Budd, J., Miller, B. S., Weckman, N. E., Cherkaoui, D., Huang, D., Decruz, A. T., Fongwen, N., Han, G., Broto, M., & Estcourt, C. S. (2023). Lateral flow test engineering and lessons learned from COVID‐19. Nature Reviews Bioengineering, 1(1), 13-31.
[24] Burt, T., Button, K., Thom, H., Noveck, R., & Munafò, M. R. (2017). The burden of the “false‐negatives” in clinical development: Analyses of current and alternative scenarios and corrective measures. Clinical and Translational Science, 10(6), 470-479.
[25] Butler, J. E. (2000). Enzyme‐linked immunosorbent assay. Journal of Immunoassay, 21(2‐3), 165-209.
[26] Camelo, S., Ciocan, F., Iancu, D. A., Warnes, X. S., & Zoumpoulis, S. I. (2021). Quantifying the benefits of targeting for pandemic response. medRxiv.
[27] CAP. (2023). The Behavioral Health Care Affordability Problem. https://www.americanprogress.org/article/the‐behavioral‐health‐care‐affordability‐problem/
[28] Center for Systems Science and Engineering (CSSE) at Johns Hopkins University (JHU). (2022). COVID‐19 Dashboard. https://coronavirus.jhu.edu/map.html
[29] Centers for Disease Control and Prevention. (2022). COVID‐19 Testing: What You Need to Know. https://www.cdc.gov/coronavirus/2019‐ncov/symptoms‐testing/testing.html
[30] Centers of Disease Control and Prevention. (2022). Quarantine and Isolation. https://www.cdc.gov/coronavirus/2019‐ncov/your‐health/quarantine‐isolation.html
[31] Chaput, J., Barnes, J. D., Tremblay, M. S., Fogelholm, M., Hu, G., Lambert, E. V., Maher, C., Maia, J., Olds, T., & Onywera, V. (2018). Inequality in physical activity, sedentary behaviour, sleep duration and risk of obesity in children: A 12‐country study. Obesity Science & Practice, 4(3), 229-237.
[32] Chiang, T., Chang, W., Chen, S. L., Yen, A. M., Fann, J. C., Chiu, S. Y., Chen, Y., Chuang, S., Shieh, C., & Liu, C. (2021). Mass eradication of helicobacter pylori to reduce gastric cancer incidence and mortality: A long‐term cohort study on Matsu Islands. Gut, 70(2), 243-250.
[33] Chu, P. C., & Beasley, J. E. (1998). A genetic algorithm for the multidimensional knapsack problem. Journal of Heuristics, 4(1), 63-86. · Zbl 0913.90218
[34] Cleveland Clinic. (2022). COVID‐19‐Related Testing Costs. https://my.clevelandclinic.org/patients/billing‐finance/comprehensive‐hospital‐charges/covid‐19‐testing‐costs
[35] Coffey, K., Diekema, D. J., & Morgan, D. J. (2021). Interpreting SARS‐CoV‐2 test results. Jama, 326(15), 1528-1529.
[36] Dai, C., Guo, M., Wu, Y., Cao, B., Wang, X., Wu, Y., Kang, H., Kong, D., Zhu, Z., & Ying, T. (2021). Ultraprecise antigen 10‐in‐1 pool testing by multiantibodies transistor assay. Journal of the American Chemical Society, 143(47), 19794-19801.
[37] Dodge, Y. (2008). The concise encyclopedia of statistics (pp. 231-233). Springer Science & Business Media. · Zbl 1267.62001
[38] Dorfman, R. (1943). The detection of defective members of large populations. The Annals of Mathematical Statistics, 14(4), 436-440.
[39] Eberhardt, J. N., Breuckmann, N. P., & Eberhardt, C. S. (2020). Multi‐stage group testing improves efficiency of large‐scale COVID‐19 screening. Journal of Clinical Virology, 128, 104382.
[40] El‐Hajj, H., Bish, D. R., Bish, E. K., & Aprahamian, H. (2022). Screening multi‐dimensional heterogeneous populations for infectious diseases under scarce testing resources, with application to COVID‐19. Naval Research Logistics (NRL), 69(1), 3-20. · Zbl 1526.92025
[41] Ely, J., Galeotti, A., Jann, O., & Steiner, J. (2021). Optimal test allocation. Journal of Economic Theory, 193, 105236. · Zbl 1461.91147
[42] Federal Emergency Management Agency. (2023). COVID‐19 Funeral Assistance. https://www.fema.gov/disaster/historic/coronavirus/economic/funeral‐assistance
[43] Ghosh, S., Agarwal, R., Rehan, M. A., Pathak, S., Agarwal, P., Gupta, Y., Consul, S., Gupta, N., Goenka, R., & Rajwade, A. (2021). A compressed sensing approach to pooled RT‐PCR testing for COVID‐19 detection. IEEE Open Journal of Signal Processing, 2, 248-264.
[44] Gollier, C., & Gossner, O. (2020). Group testing against COVID‐19. EconPol Policy Brief: Technical report. Leibniz Institute for Economic Research at the University of Munich.
[45] Hahn‐Klimroth, M., & Loick, P. (2019). Optimal adaptive group testing. arXiv preprint arXiv:1911.06647.
[46] Haseltine, W. A. (2022). Success And Challenges In Mass Screening For COVID‐19 Control: The Andorra Story. https://www.forbes.com/sites/williamhaseltine/2021/06/10/success‐and‐challenges‐in‐mass‐screening‐for‐covid‐19‐control‐the‐andorra‐story/?sh‐7a5a59b137af
[47] Hilsden, R. J., Heitman, S. J., Mizrahi, B., Narod, S. A., & Goshen, R. (2018). Prediction of findings at screening colonoscopy using a machine learning algorithm based on complete blood counts (ColonFlag). PLoS One, 13(11), e0207848.
[48] Hou, P., Tebbs, J. M., Bilder, C. R., & McMahan, C. S. (2017). Hierarchical group testing for multiple infections. Biometrics, 73(2), 656-665. · Zbl 1372.62070
[49] Howell, M. R., Quinn, T. C., & Gaydos, C. A. (1998). Screening for chlamydia trachomatis in asymptomatic women attending family planning clinics: A cost‐effectiveness analysis of three strategies. Annals of Internal Medicine, 128(4), 277-284.
[50] Hsih, W., Cheng, M., Ho, M., Chou, C., Lin, P., Chi, C., Liao, W., Chen, C., Leong, L., & Tien, N. (2020). Featuring COVID‐19 cases via screening symptomatic patients with epidemiologic link during flu season in a medical center of Central Taiwan. Journal of Microbiology, Immunology and Infection, 53(3), 459-466.
[51] Hu, D., Hook, E. W., III, & Goldie, S. J. (2004). Screening for chlamydia trachomatis in women 15 to 29 years of age: A cost‐effectiveness analysis. Annals of Internal Medicine, 141(7), 501-513.
[52] Hughes‐Oliver, J. M., & Swallow, W. H. (1994). A two‐stage adaptive group‐testing procedure for estimating small proportions. Journal of the American Statistical Association, 89(427), 982-993. · Zbl 0804.62094
[53] Hwang, F. K. (1975). A generalized binomial group testing problem. Journal of the American Statistical Association, 70(352), 923-926. · Zbl 0321.62101
[54] Johanna, N., Citrawijaya, H., & Wangge, G. (2020). Mass screening vs lockdown vs combination of both to control COVID‐19: A systematic review. Journal of Public Health Research, 9(4), 523‐531.
[55] Johansson, M. A., Quandelacy, T. M., Kada, S., Prasad, P. V., Steele, M., Brooks, J. T., Slayton, R. B., Biggerstaff, M., & Butler, J. C. (2021). SARS‐CoV‐2 transmission from people without COVID‐19 symptoms. JAMA Network Open, 4(1), e2035057.
[56] Kamihira, S., Nakasima, S., Oyakawa, Y., Moriuti, Y., Ichimaru, M., Okuda, H., Kanamura, M., & Oota, T. (1987). Transmission of human T cell lymphotropic virus type I by blood transfusion before and after mass screening of sera from seropositive donors. Vox Sanguinis, 52(1‐2), 43-44.
[57] Kewenter, J., Björk, S., Haglind, E., Smith, L., Svanvik, J., & Aåhrén, C. (1988). Screening and rescreening for colorectal cancer. A controlled trial of fecal occult blood testing in 27,700 subjects. Cancer, 62(3), 645-651.
[58] Khan, A. A., Alahdal, H. M., Alotaibi, R. M., Sonbol, H. S., Almaghrabi, R. H., Alsofayan, Y. M., Althunayyan, S. M., Alsaif, F. A., Almudarra, S. S., & Alabdulkareem, K. I. (2021). Controlling COVID‐19 pandemic: A mass screening experience in Saudi Arabia. Frontiers Public Health, 8, 606385.
[59] Kim, H., & Hudgens, M. G. (2009). Three‐dimensional array‐based group testing algorithms. Biometrics, 65(3), 903-910. · Zbl 1172.62051
[60] Kolak, M., Li, X., & Lin, Q. (2022). Near Real‐Time Exploration of the COVID‐19 Pandemic. https://theuscovidatlas.org/about#team
[61] Ladhani, S. N., Chow, J. Y., Atkin, S., Brown, K. E., Ramsay, M. E., Randell, P., Sanderson, F., Junghans, C., Sendall, K., & Downes, R. (2021). Regular mass screening for SARS‐CoV‐2 infection in care homes already affected by COVID‐19 outbreaks: Implications of false positive test results. Journal of Infection, 82(2), 282-327.
[62] Lai, C. K., & Lam, W. (2021). Laboratory testing for the diagnosis of COVID‐19. Biochemical and Biophysical Research Communications, 538, 226-230.
[63] Lin, J. (2014). Screening of gastric cancer: Who, when, and how. Clinical Gastroenterology and Hepatology, 12(1), 135-138.
[64] Lipnowski, E., & Ravid, D. (2021). Group testing for quarantine decisions. Journal of Economic Theory, 198, 105372. · Zbl 1481.91093
[65] Liu, Y., & Rocklöv, J. (2022). The effective reproductive number of the omicron variant of SARS‐CoV‐2 is several times relative to Delta. Journal of Travel Medicine, 29(3), taac037.
[66] Lutz, A. M., Willmann, J. K., Cochran, F. V., Ray, P., & Gambhir, S. S. (2008). Cancer screening: A mathematical model relating secreted blood biomarker levels to tumor sizes. PLoS Medicine, 5(8), e170.
[67] Mcgough, M. (2022). One of California’s broadest COVID‐19 testing programs is ‘winding down’ operations. https://www.sacbee.com/news/coronavirus/article260774157.html
[68] McMahan, C. S., Tebbs, J. M., & Bilder, C. R. (2012a). Informative Dorfman screening. Biometrics, 68(1), 287-296. · Zbl 1241.62161
[69] McMahan, C. S., Tebbs, J. M., & Bilder, C. R. (2012b). Two‐dimensional informative array testing. Biometrics, 68(3), 793-804. · Zbl 1272.62073
[70] Mistry, D. A., Wang, J. Y., Moeser, M., Starkey, T., & Lee, L. Y. (2021). A systematic review of the sensitivity and specificity of lateral flow devices in the detection of SARS‐CoV‐2. BMC Infectious Diseases, 21(1), 1-14.
[71] Moghadas, S. M., Fitzpatrick, M. C., Sah, P., Pandey, A., Shoukat, A., Singer, B. H., & Galvani, A. P. (2020). The implications of silent transmission for the control of COVID‐19 outbreaks. Proceedings of the National Academy of Sciences, 117(30), 17513-17515.
[72] Mytton, O. T., McCarthy, N., Watson, J., & Whiting, P. (2021). Interpreting a lateral flow SARS‐CoV‐2 antigen test. Bmj, 373, 1411.
[73] Norman, H. (2022). Why At‐Home Rapid COVID Tests Cost So Much, Even After Biden’s Push for Lower Prices. https://khn.org/news/article/home‐rapid‐covid‐tests‐cost‐biden‐push‐to‐lower‐prices/
[74] Ohsfeldt, R. L., Choong, C. K., Mc Collam, P. L., Abedtash, H., Kelton, K. A., & Burge, R. (2021). Inpatient hospital costs for COVID‐19 patients in the United States. Advances in Therapy, 38, 5557-5595.
[75] Ollstein, A. M. (2022). STDs are surging. The funding to fight them is not. https://www.politico.com/news/2022/04/12/stds‐funding‐00024678
[76] WHO. (2010). Screening donated blood for transfusion‐transmissible infections: Recommendations. World Health Organization.
[77] Our World in Data. (2023). COVID‐19 Data Explorer. https://ourworldindata.org/explorers/coronavirus‐data‐explorer?zoomToSelection=true&time=2020‐03‐01¨latest&facet=none&country=USA∼GBR∼CAN∼DEU∼ITA∼IND&pickerSort=asc&pickerMetric=location&Metric=Confirmed+cases&Interval=7‐day+rolling+average&Relative+to+Population=true&Color+by+test+positivity=false
[78] Peng, T., Liu, X., Ni, H., Cui, Z., & Du, L. (2020). City lockdown and nationwide intensive community screening are effective in controlling the COVID‐19 epidemic: Analysis based on a modified sir model. PLoS One, 15(8), e0238411.
[79] Peto, T., Affron, D., Afrough, B., Agasu, A., Ainsworth, M., Allanson, A., Allen, K., Allen, C., Archer, L., & Ashbridge, N. (2021). COVID‐19: Rapid antigen detection for SARS‐CoV‐2 by lateral flow assay: A national systematic evaluation of sensitivity and specificity for mass‐testing. EClinicalMedicine, 36, 100924.
[80] Phatarfod, R., & Sudbury, A. (1994). The use of a square array scheme in blood testing. Statistics in Medicine, 13(22), 2337-2343.
[81] Pollock, N. R., Berlin, D., Smole, S. C., Madoff, L. C., Brown, C., Henderson, K., Larsen, E., Hay, J., Gabriel, S., & Gawande, A. A. (2021). Implementation of SARS‐CoV2 screening in K-12 schools using in‐school pooled molecular testing and deconvolution by rapid antigen test. Journal of Clinical Microbiology, 59(9), e01121-e01123.
[82] Pottgiesser, T., Umhau, M., Ahlgrim, C., Ruthardt, S., Roecker, K., & Schumacher, Y. O. (2007). Hb mass measurement suitable to screen for illicit autologous blood transfusions. Medicine and Science in Sports and Exercise, 39(10), 1748-1756.
[83] Quattrocchi, A., Mamais, I., Tsioutis, C., Christaki, E., Constantinou, C., Koliou, M., Pana, Z., Silvestros, V., Theophanous, F., & Haralambous, C. (2020). Extensive testing and public health interventions for the control of COVID‐19 in the Republic of Cyprus between march and may 2020. Journal of Clinical Medicine, 9(11), 3598.
[84] Rock, C., & Tran, K. N. (2023). High‐Throughput, laboratory‐based antigen tests address an unmet need in the global COVID‐19 pandemic. https://www.healthaffairs.org/do/10.1377/forefront.20220209.825156/
[85] Román, R., Sala, M., De la Vega, M., Natal, C., Galceran, J., Gonzalez‐Roman, I., Baroja, A., Zubizarreta, R., Ascunce, N., & Salas, D. (2011). Effect of false‐positives and women’s characteristics on long‐term adherence to breast cancer screening. Breast Cancer Research and Treatment, 130, 543-552.
[86] Salcedo, N., Harmon, A., & Herrera, B. B. (2021). Pooling of samples for SARS‐CoV‐2 detection using a rapid antigen test. Frontiers in Tropical Diseases, 2, 707865.
[87] Salcedo, N., Sena, B. F., Qu, X., & Herrera, B. B. (2022). Comparative evaluation of rapid isothermal amplification and antigen assays for screening testing of SARS‐CoV‐2. Viruses, 14(3), 468.
[88] Samuels, S. (1978). The exact solution to the two‐stage group‐testing problem. Technometrics, 20(4), 497-500. · Zbl 0397.60022
[89] Scudellari, M. (2020). How Iceland hammered COVID with science. Nature, 587(7835), 536-540.
[90] Stanley, S., Hamel, D. J., Wolf, I. D., Riedel, S., Dutta, S., Contreras, E., Callahan, C. J., Cheng, A., Arnaout, R., & Kirby, J. E. (2022). Limit of detection for rapid antigen testing of the SARS‐CoV‐2 omicron and Delta variants of concern using live‐virus culture. Journal of Clinical Microbiology, 60(5), e00122-e00140.
[91] Stone, A. (2022). Nebraska Public Health Lab begins pool testing COVID‐19 samples. https://www.ketv.com/article/nebraska‐public‐health‐lab‐begins‐pool‐testing‐covid‐19‐samples/31934880#
[92] Sunjaya, A. F., & Sunjaya, A. P. (2020). Pooled testing for expanding COVID‐19 mass surveillance. Disaster Medicine and Public Health Preparedness, 14(3), e42-e43.
[93] Tashiro, A., Sano, M., Kinameri, K., Fujita, K., & Takeuchi, Y. (2006). Comparing mass screening techniques for gastric cancer in Japan. World Journal of Gastroenterology: WJG, 12(30), 4873.
[94] Tebbs, J. M., McMahan, C. S., & Bilder, C. R. (2013). Two‐stage hierarchical group testing for multiple infections with application to the infertility prevention project. Biometrics, 69(4), 1064-1073. · Zbl 1288.62169
[95] The White House. (2022). American Pandemic Preparedness: Transforming Our Capabilities. https://www.whitehouse.gov/wp‐content/uploads/2021/09/American‐Pandemic‐Preparedness‐Transforming‐Our‐Capabilities‐Final‐For‐Web.pdf
[96] Theagarajan, L. N. (2020). Group testing for COVID‐19: How to stop worrying and test more. arXiv preprint arXiv:2004.06306.
[97] U.S. Food and Drug Administration. (2022). COVID‐19 Test Basics. https://www.fda.gov/consumers/consumer‐updates/covid‐19‐test‐basics
[98] United States Census Bureau. (2022). U.S. County Population Totals: 2010-2019. https://www.census.gov/data/tables/time‐series/demo/popest/2010s‐counties‐total.html
[99] Upadhyay, R. K., Chatterjee, S., Saha, S., & Azad, R. K. (2020). Age‐group‐targeted testing for COVID‐19 as a new prevention strategy. Nonlinear Dynamics, 101(3), 1921-1932.
[100] Wang, L. Y., Owusu‐Edusei, K., Parker, J. T., & Wilson, K. (2021). Cost‐effectiveness of a school‐based chlamydia screening program, Duval county, FL. The Journal of School Nursing, 37(3), 195-201.
[101] Wein, L. M., & Zenios, S. A. (1996). Pooled testing for HIV screening: Capturing the dilution effect. Operations Research, 44(4), 543-569. · Zbl 0865.90091
[102] Wolcott, M. (1992). Advances in nucleic acid‐based detection methods. Clinical Microbiology Reviews, 5(4), 370-386.
[103] World Health Organization. (2022). COVID‐19 Target product profiles for priority diagnostics to support response to the COVID‐19 pandemic. https://www.who.int/publications/m/item/covid‐19‐target‐product‐profiles‐for‐priority‐diagnostics‐to‐support‐response‐to‐the‐covid‐19‐pandemic‐v.0.1
[104] Yelin, I., Aharony, N., Tamar, E. S., Argoetti, A., Messer, E., Berenbaum, D., Shafran, E., Kuzli, A., Gandali, N., & Shkedi, O. (2020). Evaluation of COVID‐19 RT‐qPCR test in multi sample pools. Clinical Infectious Diseases, 71(16), 2073-2078.
[105] Yohe, S. (2020). How good are COVID‐19 (SARS‐CoV‐2) diagnostic PCR tests. College of American Pathologists. https://www.cap.org/member‐resources/articles/how‐good‐are‐covid‐19‐sars‐cov‐2‐diagnostic‐pcr‐tests#:∼:text=The
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.