×

Screening multi-dimensional heterogeneous populations for infectious diseases under scarce testing resources, with application to COVID-19. (English) Zbl 1526.92025

Summary: Testing provides essential information for managing infectious disease outbreaks, such as the COVID-19 pandemic. When testing resources are scarce, an important managerial decision is who to test. This decision is compounded by the fact that potential testing subjects are heterogeneous in multiple dimensions that are important to consider, including their likelihood of being disease-positive, and how much potential harm would be averted through testing and the subsequent interventions. To increase testing coverage, pooled testing can be utilized, but this comes at a cost of increased false-negatives when the test is imperfect. Then, the decision problem is to partition the heterogeneous testing population into three mutually exclusive sets: those to be individually tested, those to be pool tested, and those not to be tested. Additionally, the subjects to be pool tested must be further partitioned into testing pools, potentially containing different numbers of subjects. The objectives include the minimization of harm (through detection and mitigation) or maximization of testing coverage. We develop data-driven optimization models and algorithms to design pooled testing strategies, and show, via a COVID-19 contact tracing case study, that the proposed testing strategies can substantially outperform the current practice used for COVID-19 contact tracing (individually testing those contacts with symptoms). Our results demonstrate the substantial benefits of optimizing the testing design, while considering the multiple dimensions of population heterogeneity and the limited testing capacity.
{© 2021 Wiley Periodicals LLC}

MSC:

92C50 Medical applications (general)
92D30 Epidemiology
Full Text: DOI

References:

[1] Abdalhamid, B., Bilder, C. R., McCutchen, E. L., Hinrichs, S. H., Koepsell, S. A., & Iwen, P. C. (2020). Assessment of specimen pooling to conserve SARS CoV‐2 testing resources. American Journal of Clinical Pathology, 153(6), 715-718.
[2] Alimohamadi, Y., Taghdir, M., & Sepandi, M. (2020). The estimate of the basic reproduction number for novel coronavirus disease (COVID‐19): A systematic review and meta‐analysis. Journal of Preventive Medicine and Public Health, 53, 151-157.
[3] Allen, D., Block, S., Cohen, J., Eckersley, P., Eifler, M., Gosti, L., Goux, D., Gruener, D., Hart, V., Hitzig, Z., Krein, J., Langford, O., Nordhaus, T., Rosentha, M., Seth, R., Siddarth, D., Simons, O., Sitaraman, G., Slaughter, A.‐M., … Weyl, E. G. (2020). Roadmap to pandemic resilience. Edmond J. Safra Center for Ethics, Harvard University.
[4] Aprahamian, H., Bish, D. R., & Bish, E. K. (2016). Residual risk and waste in donated blood with pooled nucleic acid testing. Statistics in Medicine, 35(28), 5283-5301.
[5] Aprahamian, H., Bish, D. R., & Bish, E. K. (2019). Optimal risk‐based group testing. Management Science, 65(9), 4365-4384.
[6] Aprahamian, H., Bish, D. R., & Bish, E. K. (2020). Optimal group testing: Structural properties and robust solutions, with application to public health screening. INFORMS Journal on Computing, 32(4), 895-911. · Zbl 07303813
[7] Aprahamian, H., Bish, E. K., & Bish, D. R. (2018). Adaptive risk‐based pooling in public health screening. IISE Transactions, 50(9), 753-766.
[8] Arevalo‐Rodriguez, I., Buitrago‐Garcia, D., Simancas‐Racines, D., Zambrano‐Achig, P., delCampo, R., Ciapponi, A., Sued, O., Martinez‐Garcia, L., Rutjes, A., Low, N., Bossuyt, P. M., Perez‐Molina, J. A., & Zamora, J. (2020). False‐negative results of initial RT‐PCR assays for COVID‐19. A systematic review. 15, e0242958.
[9] Aviran, S., & Onn, S. (2002). Momentopes, the complexity of vector partitioning, and Davenport-Schinzel sequences. Discrete & Computational Geometry, 27(3), 409-417. · Zbl 1010.68193
[10] Bai, Y., Yao, L., Wei, T., Tian, F., Jin, D.‐Y., Chen, L., & Wang, M. (2020). Presumed asymptomatic carrier transmission of COVID‐19. JAMA, 323(14), 1406-1407.
[11] Ben‐Ami, R., Klochendler, A., Seidel, M., Sido, T., Gurel‐Gurevich, O., Yassour, M., Meshorer, E., Benedek, G., Fogel, I., Oiknine‐Djian, E., Gertler, A., Rotstein, Z., Lavi, B., Dor, Y., Wolf, D. G., Salton, M., Drier, Y., Klochendler, A., Eden, A., … Daitch, Y. (2020). Large‐scale implementation of pooled RNA extraction and RT‐PCR for SARS‐CoV‐2 detection. Clinical Microbiology and Infection, 26(9), 1248-1253.
[12] Boyd, C. (2020). Coronavirus swabs should be analysed in batches to speed up government’s lagging testing programme, experts say. https://www.dailymail.co.uk/news/article‐8843949/Corvnavirus‐swabs‐analysed‐using‐pooled‐testing‐experts‐say.html
[13] Burke, R. M. (2020). Active monitoring of persons exposed to patients with confirmed COVID‐19—United States, January-February 2020. MMWR. Morbidity and Mortality Weekly Report, 69, 245-246.
[14] Carter, L. J., Garner, L. V., Smoot, J. W., Li, Y., Zhou, Q., Saveson, C. J., Sasso, J. M., Gregg, A. C., Soares, D. J., Beskid, T. R., Jervey, S. R., & Liu, C. (2020). Assay techniques and test development for COVID‐19 diagnosis. ACS Central Science, 6(5), 591-605.
[15] Centers for Disease Control and Prevention. (2020a). Interim guidance for use of pooling procedures in SARS‐ CoV‐2 diagnostic, screening, and surveillance testing, 2020. https://www.cdc.gov/coronavirus/2019‐ncov/lab/pooling‐procedures.html
[16] Centers for Disease Control and Prevention. (2020b). Public health recommendations for community‐related exposure. https://www.cdc.gov/coronavirus/2019‐ncov/php/public‐health‐recommendations.html
[17] Chakravarty, A., Orlin, J., & Rothblum, U. (1982). A partitioning problem with additive objective with an application to optimal inventory groupings for joint replenishment. Operations Research, 30(5), 1018-1022. · Zbl 0491.90034
[18] Chakravarty, A. K., Orlin, J. B., & Rothblum, U. G. (1985). Consecutive optimizers for a partitioning problem with applications to optimal inventory groupings for joint replenishment. Operations Research, 33(4), 820-834. · Zbl 0588.90076
[19] Dorfman, R. (1943). The detection of defective members of large populations. The Annals of Mathematical Statistics, 14(4), 436-440.
[20] J. N.Eberhardt, N. P.Breuckmann, and C. S.Eberhardt (2020). Multi‐stage group testing improves efficiency of large‐scale COVID‐19 screening. Journal of Clinical Virology, 128, 104382. https://doi.org/10.1101/2020.04.10.20061176. · doi:10.1101/2020.04.10.20061176
[21] EurekAlert. (2020). COVID‐19: Pooled testing among recommendations to fix test, trace and isolate system. https://www.eurekalert.org/pub‐releases/2020‐10/s‐cpt101620.php
[22] Gal, S., & Klots, B. (1995). Optimal partitioning which maximizes the sum of the weighted averages. Operations Research, 43(3), 500-508. · Zbl 0840.90108
[23] Gandhi, M., Yokoe, D. S., & Havlir, D. V. (2020). Asymptomatic transmission, the achilles’ heel of current strategies to control COVID‐19. New England Journal of Medicine, 382, 2158-2160. https://doi.org/10.1056/NEJMe2009758 · doi:10.1056/NEJMe2009758
[24] Gollier, C., & Gossner, O. (2020). Group testing against COVID‐19. Covid Economics, 1, 32-42.
[25] Gupta, D., & Malina, R. (1999). Group testing in presence of classification error. Statistics in Medicine, 18, 1049-1068.
[26] Hwang, F. K. (1975). A generalized binomial group testing problem. Journal of the American Statistical Association, 70(352), 923-926. · Zbl 0321.62101
[27] Hwang, F. K., Onn, S., & Rothblum, U. G. (1999). A polynomial time algorithm for shaped partition problems. SIAM Journal on Optimization, 10(1), 70-81. · Zbl 0955.90118
[28] Hwang, F. K., Onn, S., & Rothblum, U. G. (2000). Linear‐shaped partition problems. Operations Research Letters, 26(4), 159-163. · Zbl 0955.90117
[29] Joseph, A. (2020). Safer reopening will require millions more COVID‐19 tests per day. One solution: ‘Pool testing’. https://www.statnews.com/2020/06/26/pool‐testing‐covid‐19/
[30] Kim, H. Y., Hudgens, M. G., Dreyfuss, J. M., Westreich, D. J., & Pilcher, C. D. (2007). Comparison of group testing algorithms for case identification in the presence of test error. Biometrics, 63(4), 1152-1163. · Zbl 1136.62389
[31] Kim, S. Y., Lee, J., Sung, H., Lee, H., Han, M. G., Yoo, C. K., Lee, S. W., & Hong, K. H. (2020). Pooling upper respiratory specimens for rapid mass screening of COVID‐19 by real‐time RT‐PCR. Emerging Infectious Diseases, 26(10), 2469-2472.
[32] Korea Centers for Disease Control and Prevention. (2020). Coronavirus disease‐19: Summary of 2,370 contact investigations of the first 30 cases in the Republic of Korea. Osong Public Health and Research Perspectives, 11(2), 81-84.
[33] Lohse, S., Pfuhl, T., Berkó‐Göttel, B., Rissland, J., Geißler, T., Gärtner, B., Becker, S. L., Schneitler, S., & Smola, S. (2020). Pooling of samples for testing for SARS‐CoV‐2 in asymptomatic people. The Lancet Infectious Diseases, 20, 1231-1232.
[34] Lu, J., Peng, J., Xiong, Q., Liu, Z., Lin, H., Tan, X., Kang, M., Yuan, R., Zeng, L., Zhou, P., Liang, C., Yi, L., duPlessis, L., Song, T., Ma, W., Sun, J., Pybus, O. G., & Ke, C. (2020). Clinical, immunological and virological characterization of COVID‐19 patients that test re‐positive for SARS‐CoV‐2 by RT‐PCR. eBioMedicine, 59, 102960.
[35] Mallapaty, S. (2020). The mathematical strategy that could transform coronavirus testing. Nature, 583(7817), 504-505.
[36] McMahan, C. S., Tebbs, J. M., & Bilder, C. R. (2012). Informative Dorfman screening. Biometrics, 68(1), 287-296. · Zbl 1241.62161
[37] News Medical. (2020). Pooled testing for COVID‐19 could significantly increase testing capacity. https://www.newis‐medical.net/newis/20201016/Pooled‐testing‐for‐Covid‐19‐could‐significantly‐increase‐testing‐capacity.aspx
[38] Nguyen, N. T., Aprahamian, H., Bish, E. K., & Bish, D. R. (2019). A methodology for deriving the sensitivity of pooled testing, based on viral load progression and pooling dilution. Journal of Translational Medicine, 17(1), 252.
[39] Onn, S., & Schulman, L. J. (2001). The vector partition problem for convex objective functions. Mathematics of Operations Research, 26(3), 583-590. · Zbl 1073.90535
[40] Park, A. (2020). How pooled testing for coronavirus could help test more people in less time. https://time.com/5867102/pooled‐testing‐coronavirus/
[41] Pilcher, C. D., Westreich, D., & Hudgens, M. G. (2020). Group testing for SARS‐CoV‐2 to enable rapid scale‐up of testing and real‐time surveillance of incidence. The Journal of Infectious Diseases, 222, 903-909.
[42] Rothe, C., Schunk, M., Sothmann, P., Bretzel, G., Froeschl, G., Wallrauch, C., Zimmer, T., Thiel, V., Janke, C., Guggemos, W., Seilmaier, M., Drosten, C., Vollmar, P., Zwirglmaier, K., Zange, S., Wölfel, R., & Hoelscher, M. (2020). Transmission of 2019‐nCoV infection from an asymptomatic contact in Germany. New England Journal of Medicine, 382(10), 970-971.
[43] Surkova, E., Nikolayevskyy, V., & Drobniewski, F. (2020). False‐positive COVID‐19 results: Hidden problems and costs. The Lancet Respiratory Medicine, 8, 1167-1168.
[44] Wacharapluesadee, S., Kaewpom, T., Ampoot, W., Ghai, S., Khamhang, W., Worachotsueptrakun, K., Wanthong, P., Nopvichai, C., Supharatpariyakorn, T., Putcharoen, O., Paitoonpong, L., Suwanpimolkul, G., Jantarabenjakul, W., Hemachudha, P., Krichphiphat, A., Buathong, R., Plipat, T., & Hemachudha, T. (2020). Evaluating the efficiency of specimen pooling for PCR‐based detection of COVID‐19. Journal of Medical Virology, 92, 2193-2199.
[45] Wang, Y., Tian, H., Zhang, L., Zhang, M., Guo, D., Wu, W., Zhang, X., Kan, G. L., Jia, L., Huo, D., Liu, B., Wang, X., Sun, Y., Wang, Q., Yang, P., & MacIntyre, C. R. (2020). Reduction of secondary transmission of SARS‐CoV‐2 in households by face mask use, disinfection and social distancing: A cohort study in Beijing, China. BMJ Global Health, 5(5), e002794.
[46] Watson, J., Whiting, P. F., & Brush, J. E. (2020). Interpreting a COVID‐19 test result. BMJ, 369, m1808. https://doi.org/10.1136/bmj.m1808 · doi:10.1136/bmj.m1808
[47] Wiesbauer, F. (2020). How is RT‐PCR used to test for COVID‐19?. MedMastery. https://www.medmastery.com/guide/covid‐19‐clinical‐guide/how‐real‐time‐reverse‐transcription‐polymerase‐chain‐reaction‐rt‐pcr
[48] World Health Organization. (2020). WHO Director‐General’s opening remarks at the media briefing on COVID‐192020. https://www.who.int/dg/speeches/detail/who‐director‐general‐s‐opening‐remarks‐at‐the‐media‐briefing‐on‐covid‐19‐16‐march‐2020
[49] Yelin, I., Aharony, N., Shaer Tamar, E., Argoetti, A., Messer, E., Berenbaum, D., Shafran, E., Ku‐zli, A., Gandali, N., Shkedi, O., Hashimshony, T., Mandel‐Gutfreund, Y., Halberthal, M., Geffen, Y., Szwarcwort‐Cohen, M., & Kishony, R. (2020). Evaluation of COVID‐19 RT‐qPCR test in multi‐sample pools. Clinical Infectious Diseases, 71, 2073-2078. https://doi.org/10.1093/cid/ciaa531 · doi:10.1093/cid/ciaa531
[50] Zenios, S. A., & Wein, L. M. (1998). Pooled testing for HIV prevalence estimation: Exploiting the dilution effect. Statistics in Medicine, 17(13), 1447-1467.
[51] Zhang, J., Tian, S., Lou, J., & Chen, Y. (2020). Familial cluster of COVID‐19 infection from an asymptomatic. Critical Care, 24(1), 1-3.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.