×

Optimal group testing: structural properties and robust solutions, with application to public health screening. (English) Zbl 07303813

Summary: We provide a novel regret-based robust formulation of the Dorfman group size problem considering the realistic setting where the prevalence rate is uncertain, establish key structural properties of the optimal solution, and provide an exact algorithm. Our analysis also leads to exact closed-form expressions for the optimal Dorfman group size under a deterministic prevalence rate, which is the problem studied in the extant literature. Thus, our structural results not only unify existing, and mostly empirical, results on the Dorfman group size problem under a deterministic prevalence rate, but, more importantly, enable us to efficiently solve the robust version of this problem to optimality. We demonstrate the value of robust testing schemes with a case study on disease screening using realistic data. Our case study indicates that robust testing schemes can significantly outperform their deterministic counterparts, by not only substantially reducing the maximum regret value, but, in the majority of the cases, reducing testing costs as well. Our findings have important implications on public health screening practices.
The online supplement is available at https://doi.org/10.1287/ijoc.2019.0942.

MSC:

90Cxx Mathematical programming
Full Text: DOI

References:

[1] American Red Cross (2017) Details of tests performed for different infectious agents. Accessed February 1, 2017, http://www.redcrossblood.org/learn-about-blood/what-happens-donated-blood/blood-testing.Google Scholar
[2] Aprahamian H, Bish DR, Bish EK (2016) Residual risk and waste in donated blood with pooled nucleic acid testing. Statist. Med. 35(28):5283-5301.Crossref, Google Scholar · doi:10.1002/sim.7066
[3] Aprahamian H, Bish DR, Bish EK (2019) Optimal risk-based group testing. Management Sci. 65(9):4365-4384.Link, Google Scholar
[4] Berger T, Mehravari N, Towsley D, Wolf J (1984) Random multiple-access communication and group testing. IEEE Trans. Comm. 32(7):769-779.Crossref, Google Scholar · doi:10.1109/TCOM.1984.1096146
[5] Bertsimas D, Brown DB, Caramanis C (2011) Theory and applications of robust optimization. SIAM Rev. 53(3):464-501.Crossref, Google Scholar · Zbl 1233.90259 · doi:10.1137/080734510
[6] Bertsimas D, Sim M (2004) The price of robustness. Oper. Res. 52(1):35-53.Link, Google Scholar · Zbl 1165.90565
[7] Bish DR, Bish EK, Xie RS, Stramer SL (2014) Going beyond “same-for-all” testing of infectious agents in donated blood. IIE Trans. 46(11):1147-1168.Crossref, Google Scholar · doi:10.1080/0740817X.2014.882038
[8] Black MS, Bilder CR, Tebbs JM (2012) Group testing in heterogeneous populations by using halving algorithms. J. Roy. Statist. Soc. Ser. C: Appl. Statist. 61(2):277-290.Crossref, Google Scholar · doi:10.1111/j.1467-9876.2011.01008.x
[9] Blass A, Gurevich Y (2002) The logic in computer science column pairwise testing. Bull. EATCS 78:100-132.Google Scholar · Zbl 1169.68352
[10] Burden RL, Faires JD (1985) 2.1 the bisection algorithm. Numerical Analysis, 3rd ed. (Prindle, Weber, and Schmidt, Boston), 46-52.Google Scholar
[11] Centers for Disease Control and Prevention (2014) Summary of notifiable diseases—United States. Accessed August 1, 2018, https://www.cdc.gov/mmwr/preview/mmwrhtml/mm6153a1.htm.Google Scholar
[12] Centers for Disease Control and Prevention (2015) Diagnoses of HIV infection in the United States and dependent areas. Accessed July 1, 2017, https://www.cdc.gov/hiv/pdf/library/reports/surveillance/cdc-hiv-surveillance-report-2015-vol-27.pdf.Google Scholar
[13] Centers for Disease Control and Prevention (2019a) West Nile virus. Accessed February 1, 2019, https://www.cdc.gov/westnile/index.html.Google Scholar
[14] Centers for Disease Control and Prevention (2019b) West Nile virus—Final cumulative maps & data for 1999-2018. Accessed February 1, 2019, https://www.cdc.gov/westnile/statsmaps/cumMapsData.html.Google Scholar
[15] Corless RM, Gonnet GH, Hare DE, Jeffrey DJ, Knuth DE (1996) On the Lambert W function. Adv. Comput. Math. 5(1):329-359.Crossref, Google Scholar · Zbl 0863.65008 · doi:10.1007/BF02124750
[16] Dauphin G, Zientara S (2007) West Nile virus: Recent trends in diagnosis and vaccine development. Vaccine 25(30):5563-5576.Crossref, Google Scholar · doi:10.1016/j.vaccine.2006.12.005
[17] Dorfman R (1943) The detection of defective members of large populations. Ann. Math. Statist. 14(4):436-440.Crossref, Google Scholar · doi:10.1214/aoms/1177731363
[18] El-Amine H, Bish EK, Bish DR (2017) Robust postdonation blood screening under prevalence rate uncertainty. Oper. Res. 66(1):1-17.Link, Google Scholar · Zbl 1455.92072
[19] European Centre for Disease Prevention and Control. Vector-borne diseases. Accessed October 1, 2018, https://ecdc.europa.eu/en/climate-change/climate-change-europe/vector-borne-diseases.Google Scholar · Zbl 1390.92148
[20] Graff LE, Roeloffs R (1972) Group testing in the presence of test error; an extension of the Dorfman procedure. Technometrics 14(1):113-122.Crossref, Google Scholar · doi:10.1080/00401706.1972.10488888
[21] Howard J (2018) Rates of three STDs in US reach record high, CDC says. CNN (August 28), https://www.cnn.com/2018/08/28/health/std-rates-united-states-2018-bn/index.html.Google Scholar
[22] Hwang FK (1975) A generalized binomial group testing problem. J. Amer. Statist. Assoc. 70(352):923-926.Crossref, Google Scholar · Zbl 0321.62101 · doi:10.1080/01621459.1975.10480324
[23] Johnson NL, Kotz S, Wu XZ (1991) Inspection Errors for Attributes in Quality Control, Monographs on Statistics and Applied Probability, vol. 44 (CRC Press, Boca Raton, FL).Crossref, Google Scholar · doi:10.1007/978-1-4899-3196-2
[24] Kim HY, Hudgens MG, Dreyfuss JM, Westreich DJ, Pilcher CD (2007) Comparison of group testing algorithms for case identification in the presence of test error. Biometrics 63(4):1152-1163.Crossref, Google Scholar · Zbl 1136.62389 · doi:10.1111/j.1541-0420.2007.00817.x
[25] Korves CT, Goldie SJ, Murray MB (2006) Cost-effectiveness of alternative blood-screening strategies for West Nile virus in the United States. PLoS Med. 3(2):e21.Crossref, Google Scholar · doi:10.1371/journal.pmed.0030021
[26] Lewis JL, Lockary VM, Kobic S (2012) Cost savings and increased efficiency using a stratified specimen pooling strategy for Chlamydia trachomatis and Neisseria gonorrhoeae. Sexually Transmitted Diseases 39(1):46-48.Crossref, Google Scholar · doi:10.1097/OLQ.0b013e318231cd4a
[27] McMahan CS, Tebbs JM, Bilder CR (2012) Informative Dorfman screening. Biometrics 68(1):287-296.Crossref, Google Scholar · Zbl 1241.62161 · doi:10.1111/j.1541-0420.2011.01644.x
[28] Natarajan K, Shi D, Toh KC (2013) A probabilistic model for minmax regret in combinatorial optimization. Oper. Res. 62(1):160-181.Link, Google Scholar · Zbl 1291.90208
[29] North Carolina State Laboratory of Public Health. Virology/serology: Chlamydia/gonorrhea. Accessed November 1, 2016, http://slph.ncpublichealth.com/virology-serology/chlamydia/default.asp.Google Scholar
[30] Perakis G, Roels G (2008) Regret in the newsvendor model with partial information. Oper. Res. 56(1):188-203.Link, Google Scholar · Zbl 1167.90350
[31] Petersen LR, Carson PJ, Biggerstaff BJ, Custer B, Borchardt SM, Busch MP (2012) Estimated cumulative incidence of West Nile virus infection in US adults, 1999-2010. Epidemiology Infection 141(3):591-595.Crossref, Google Scholar · doi:10.1017/S0950268812001070
[32] Pfleiderer C, Blümel J, Schmidt M, Roth WK, Houfar MK, Eckert J, Chudy M, Menichetti E, Lechner S, Nübling CM (2008) West Nile virus and blood product safety in Germany. J. Medical Virology 80(3):557-563.Crossref, Google Scholar · doi:10.1002/jmv.21110
[33] Rios M, Daniel S, Chancey C, Hewlett IK, Stramer SL (2007) West Nile virus adheres to human red blood cells in whole blood. Clinical Infectious Disease 45(2):181-186.Crossref, Google Scholar · doi:10.1086/518850
[34] Samuels SM (1978) The exact solution to the two-stage group-testing problem. Technometrics 20(4):497-500.Crossref, Google Scholar · Zbl 0397.60022 · doi:10.1080/00401706.1978.10489706
[35] Saraniti BA (2006) Optimal pooled testing. Health Care Management Sci. 9(2):143-149.Crossref, Google Scholar · doi:10.1007/s10729-006-7662-y
[36] Shipitsyna E, Shalepo K, Savicheva A, Unemo M, Domeika M (2007) Pooling samples: The key to sensitive, specific and cost-effective genetic diagnosis of chlamydia trachomatis in low-resource countries. Acta Dermato-Venereologica 87(2):140-143.Crossref, Google Scholar · doi:10.2340/00015555-0196
[37] Sobel M, Groll PA (1959) Group testing to eliminate efficiently all defectives in a binomial sample. Bell System Tech. J. 38(5):1179-1252.Crossref, Google Scholar · doi:10.1002/j.1538-7305.1959.tb03914.x
[38] Stramer SL, Fang CT, Foster GA, Wagner AG, Brodsky JP, Dodd RY (2005) West Nile virus among blood donors in the United States, 2003 and 2004. New England J. Medicine 353(5):451-459.Crossref, Google Scholar · doi:10.1056/NEJMoa044333
[39] Wein LM, Zenios SA (1996) Pooled testing for HIV screening: Capturing the dilution effect. Oper. Res. 44(4):543-569.Link, Google Scholar · Zbl 0865.90091
[40] World Health Organization (2017) Vector-borne diseases. Accessed September 1, 2018, http://www.who.int/news-room/fact-sheets/detail/vector-borne-diseases.Google Scholar · Zbl 1390.92148
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.