×

Hawking tunneling radiation from the Gauss-Bonnet AdS black hole with thermodynamic pressure. (English) Zbl 1532.83105

Summary: By viewing the cosmological parameter \(\Lambda\) as a dynamic variable, the thermodynamics of AdS black holes has been successfully extended to the case with inclusion of the thermodynamic pressure \(P\). In this thermodynamic state space, although one has presented many interesting physical phenomena, the Hawking radiation with thermodynamic pressure and volume remains unknown. In this paper, we investigate the Hawking radiation as a tunneling process from the five-dimensional neutral Gauss-Bonnet AdS black holes, where the cosmological parameter and the Gauss-Bonnet coupling parameter are not constant but viewed as dynamical variable quantities of the black holes. The results show that the tunnelling rate of emitted particles is proportional to the ratio of the initial entropy and final entropy of black hole. The exact emission spectrum thus deviates from the pure thermal spectrum, which is the same as the case that the cosmological parameter is constant. This means that the tunneling rate of particles can be obtained in the extended phase space and the tunneling process does not depend on the thermodynamic state space. Thus naturally extending the Hawking radiation framework to the extended phase space, and it’s consistent with an underlying unitary theory in the extended phase space.

MSC:

83E15 Kaluza-Klein and other higher-dimensional theories
83C57 Black holes
83C47 Methods of quantum field theory in general relativity and gravitational theory
Full Text: DOI

References:

[1] Penrose, R., Gravitational collapse and space-time singularities, Phys. Rev. Lett., 14, 3, 57 (1965) · Zbl 0125.21206 · doi:10.1103/PhysRevLett.14.57
[2] Hawking, SW, Black hole explosions?, Nature, 248, 5443, 30-1 (1974) · Zbl 1370.83053 · doi:10.1038/248030a0
[3] Hawking, SW, Particle creation by black holes, Commun. Math. Phys., 43, 3, 199-220 (1975) · Zbl 1378.83040 · doi:10.1007/BF02345020
[4] Boulware, DG, Quantum field theory in schwarzschild and rindler spaces, Phys. Rev. D., 11, 6, 1404 (1975) · doi:10.1103/PhysRevD.11.1404
[5] Damour, T.; Ruffini, R., Black-hole evaporation in the klein-sauterheisenberg-euler formalism, Phys. Rev. D., 14, 2, 332 (1976) · doi:10.1103/PhysRevD.14.332
[6] Schoutens, K.; Verlinde, H.; Verlinde, E., Quantum black hole evaporation, Phys. Rev. D., 48, 6, 2670 (1993) · Zbl 0842.53067 · doi:10.1103/PhysRevD.48.2670
[7] Verlinde, E.; Verlinde, H., A quantum s-matrix for two-dimensional black hole formation and evaporation, Nucl. Phys. B, 406, 1-2, 43-58 (1993) · Zbl 0990.81761 · doi:10.1016/0550-3213(93)90160-Q
[8] Miković, A., 2d dilaton gravity in a unitary gauge, Phys. Lett. B., 304, 1-2, 70-76 (1993) · doi:10.1016/0370-2693(93)91402-9
[9] Susskind, L.; Thorlacius, L.; Uglum, J., The stretched horizon and black hole complementarity, Phys. Rev. D., 48, 8, 3743 (1993) · doi:10.1103/PhysRevD.48.3743
[10] Almheiri, A.; Marolf, D.; Polchinski, J.; Sully, J., Black holes: complementarity or firewalls?, J High Energy Phys., 2013, 2, 1-20 (2013) · Zbl 1342.83121 · doi:10.1007/JHEP02(2013)062
[11] Hawking, SW; Perry, MJ; Strominger, A., Superrotation charge and supertranslation hair on black holes, J. High Energy Phys., 2017, 5, 1-33 (2017) · Zbl 1380.83143 · doi:10.1007/JHEP05(2017)161
[12] Parikh, MK; Wilczek, F., Hawking radiation as tunneling, Phys. Rev. Lett., 85, 24, 5042 (2000) · Zbl 1369.83053 · doi:10.1103/PhysRevLett.85.5042
[13] Parikh, M., A secret tunnel through the horizon, Int. J. Mod. Phys. D., 13, 10, 2351-2354 (2004) · Zbl 1063.83013 · doi:10.1142/S0218271804006498
[14] Hawking, SW, Information loss in black holes, Phys. Rev. D., 72, 8 (2005) · doi:10.1103/PhysRevD.72.084013
[15] Vagenas, EC, Semiclassical corrections to the bekenstein-hawking entropy of the btz black hole via self-gravitation, Phys. Lett. B., 533, 3-4, 302-306 (2002) · Zbl 0994.83031 · doi:10.1016/S0370-2693(02)01695-7
[16] Hemming, S.; Keski-Vakkuri, E., Phys. Rev. D, 64, 4 (2001) · doi:10.1103/PhysRevD.64.044006
[17] Medved, A., Radiation via tunneling from a de sitter cosmological horizon, Phys. Rev. D, 66, 12 (2002) · doi:10.1103/PhysRevD.66.124009
[18] Setare, MR; Vagenas, EC, Self-gravitational corrections to the cardy-verlinde formula of the achúcarro-ortiz black hole, Phys. Lett. B., 584, 1-2, 127-132 (2004) · Zbl 1246.83145 · doi:10.1016/j.physletb.2004.01.039
[19] Medved, A.; Vagenas, EC, On hawking radiation as tunneling with backreaction, Mod. Phys. Lett. A., 20, 32, 2449-2453 (2005) · Zbl 1076.83015 · doi:10.1142/S021773230501861X
[20] Liu, W., New coordinates for btz black hole and hawking radiation via tunnelling, Phys. Lett. B., 634, 5-6, 541-544 (2006) · Zbl 1247.83108 · doi:10.1016/j.physletb.2006.01.028
[21] Ding, C.; Wang, M.; Jing, J., Particle energy and hawking temperature, Phys. Lett. B, 676, 1-3, 99-104 (2009) · doi:10.1016/j.physletb.2009.04.069
[22] Kim, H., Hawking radiation as tunneling from charged black holes in 0a string theory, Phys. Lett. B., 703, 1, 94-99 (2011) · doi:10.1016/j.physletb.2011.07.053
[23] Jiang, Q-Q; Wu, S-Q; Cai, X., Hawking radiation as tunneling from the kerr and kerr-newman black holes, Phys. Rev. D., 73, 6 (2006) · doi:10.1103/PhysRevD.73.064003
[24] Jiang, Q-Q; Cai, X., Remarks on self-interaction correction to black hole radiation, J. High Energy Phys., 2009, 11, 110 (2009) · doi:10.1088/1126-6708/2009/11/110
[25] Zhang, J.; Zhao, Z., Hawking radiation of charged particles via tunneling from the reissner-nordström black hole, J. High Energy Phys., 2005, 10, 055 (2005) · doi:10.1088/1126-6708/2005/10/055
[26] Zhang, J.; Zhao, Z., Massive particles’ black hole tunneling and de sitter tunneling, Nucl. Phys. B., 725, 1-2, 173-180 (2005) · Zbl 1178.83038 · doi:10.1016/j.nuclphysb.2005.07.024
[27] Hu, Y.; Zhang, J.; Zhao, Z., Massive particles’hawking radiation via tunneling from the gh dilaton black hole, Mod. Phys. Lett. A., 21, 28, 2143-2149 (2006) · Zbl 1119.83326 · doi:10.1142/S0217732306020184
[28] Medved, A.; Vagenas, EC, On hawking radiation as tunneling with backreaction, Mod. Phys. Lett. A., 20, 32, 2449-2453 (2005) · Zbl 1076.83015 · doi:10.1142/S021773230501861X
[29] Kar, S., Tunneling between de sitter and anti-de sitter black holes in a noncommutative d 3-brane formalism, Phys. Rev. D., 74, 12 (2006) · doi:10.1103/PhysRevD.74.126002
[30] Cvetič, M.; Gibbons, GW; Kubizňák, D.; Pope, CN, Black hole enthalpy and an entropy inequality for the thermodynamic volume, Phys. Rev. D., 84, 2 (2011) · doi:10.1103/PhysRevD.84.024037
[31] Kubizňák, D.; Mann, RB, P- v criticality of charged ads black holes, J. High Energy Phys., 2012, 7, 1-25 (2012) · Zbl 1397.83072 · doi:10.1007/JHEP07(2012)033
[32] Dolan, B.P.: The cosmological constant and the black hole equation of state. (2010). arXiv preprint arXiv:1008.5023
[33] Dolan, BP, Pressure and volume in the first law of black hole thermodynamics, Class. Quantum Gravity, 28, 23 (2011) · Zbl 1231.83020 · doi:10.1088/0264-9381/28/23/235017
[34] Cai, R-G; Cao, L-M; Li, L.; Yang, R-Q, Pv criticality in the extended phase space of gauss-bonnet black holes in ads space, J. High Energy Phys., 2013, 9, 1-22 (2013) · doi:10.1007/JHEP09(2013)005
[35] Zeng, X-X; Liu, W-B, Holographic thermalization in gauss-bonnet gravity, Phys. Lett. B, 726, 1-3, 481-487 (2013) · Zbl 1311.83059 · doi:10.1016/j.physletb.2013.08.049
[36] Kastor, D.; Ray, S.; Traschen, J., Enthalpy and the mechanics of ads black holes, Class. Quantum Gravity, 26, 19 (2009) · Zbl 1178.83030 · doi:10.1088/0264-9381/26/19/195011
[37] Altamirano, N.; Kubizňák, D.; Mann, RB, Reentrant phase transitions in rotating anti-de sitter black holes, Phys. Rev. D., 88, 10 (2013) · doi:10.1103/PhysRevD.88.101502
[38] Liu, X.-M., Shao, H.-B., Zeng, X.-X.: Van der waals-like phase transition from holographic entanglement entropy in lorentz breaking massive gravity. Adv. High Energy Phys. 2017 (2017) · Zbl 1375.83042
[39] Altamirano, N.; Kubizňák, D.; Mann, RB; Sherkatghanad, Z., Kerr-ads analogue of triple point and solid/liquid/gas phase transition, Class. Quantum Gravity, 31, 4 (2014) · Zbl 1286.83049 · doi:10.1088/0264-9381/31/4/042001
[40] Cuendis, SA; Baier, J.; Barth, K.; Baum, S.; Bayirli, A.; Belov, A.; Bräuninger, H.; Cantatore, G.; Carmona, J.; Castel, J., First results on the search for chameleons with the kwisp detector at cast, Phys. Dark Universe, 26 (2019) · doi:10.1016/j.dark.2019.100367
[41] Kim, H-C; Cai, R-G, Slowly rotating charged gauss-bonnet black holes in ads spaces, Phys. Rev. D., 77, 2 (2008) · doi:10.1103/PhysRevD.77.024045
[42] Cai, R-G, Gauss-bonnet black holes in ads spaces, Phys. Rev. D, 65, 8 (2002) · doi:10.1103/PhysRevD.65.084014
[43] Cvetič, M.; Nojiri, S.; Odintsov, SD, Black hole thermodynamics and negative entropy in de sitter and anti-de sitter einstein-gauss-bonnet gravity, Nuc. Phys. B, 628, 1-2, 295-330 (2002) · Zbl 0992.83038 · doi:10.1016/S0550-3213(02)00075-5
[44] Myung, YS; Kim, Y-W; Park, Y-J, Thermodynamics of gauss-bonnet black holes revisited, Eur. Phys. J. C., 58, 337-346 (2008) · Zbl 1189.83053 · doi:10.1140/epjc/s10052-008-0745-9
[45] Liu, Y.; Pan, Q.; Wang, B.; Cai, R-G, Dynamical perturbations and critical phenomena in gauss-bonnet ads black holes, Phys. Lett. B., 693, 3, 343-350 (2010) · doi:10.1016/j.physletb.2010.08.047
[46] Xu, W.; Xu, H.; Zhao, L., Gauss-bonnet coupling constant as a free thermodynamical variable and the associated criticality, Eur. Phys. J. C., 74, 1-13 (2014) · doi:10.1140/epjc/s10052-014-2970-8
[47] Gross, DJ; Witten, E., Superstring modifications of einstein’s equations, Nucl. Phys. B., 277, 1-10 (1986) · doi:10.1016/0550-3213(86)90429-3
[48] Lanczos, C.: A remarkable property of the riemann-christoffel tensor in four dimensions. Ann. Math., 842-850 (1938) · JFM 64.0767.03
[49] Lovelock, D., The einstein tensor and its generalizations, J. Math. Phys., 12, 3, 498-501 (1971) · Zbl 0213.48801 · doi:10.1063/1.1665613
[50] Kuang, X-M; Saavedra, J.; Övgün, A., The effect of the gauss-bonnet term on hawking radiation from arbitrary dimensional black brane, Eur. Phys. J. C., 77, 1-7 (2017) · doi:10.1140/epjc/s10052-017-5191-0
[51] Painlevé, P., La mécanique classique et la théorie de la relativité, Comptes Rendus Academie des Sciences (serie non specifiee), 173, 677-680 (1921) · JFM 48.0997.03
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.