×

Van der Waals-like phase transition from holographic entanglement entropy in Lorentz breaking massive gravity. (English) Zbl 1375.83042

Summary: Phase transition of AdS black holes in Lorentz breaking massive gravity has been studied in the framework of holography. We find that there is a first-order phase transition (FPT) and second-order phase transition (SPT) both in Bekenstein-Hawking entropy- (BHE-) temperature plane and in holographic entanglement entropy- (HEE-) temperature plane. Furthermore, for the FPT, the equal area law is checked and for the SPT, the critical exponent of the heat capacity is also computed. Our results confirm that the phase structure of HEE is similar to that of BHE in Lorentz breaking massive gravity, which implies that HEE and BHE have some potential underlying relationship.

MSC:

83D05 Relativistic gravitational theories other than Einstein’s, including asymmetric field theories
83C57 Black holes
81P40 Quantum coherence, entanglement, quantum correlations

References:

[1] Bennett, C. H.; Brassard, G.; Crépeau, C.; Jozsa, R.; Peres, A.; Wootters, W. K., Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels, Physical Review Letters, 70, 13, 1895-1899 (1993) · Zbl 1051.81505 · doi:10.1103/PhysRevLett.70.1895
[2] Bennett, C. H.; Divincenzo, D. P., Quantum information and computation, Nature, 404, 6775, 247-255 (2000) · Zbl 1369.81023 · doi:10.1038/35005001
[3] Nielsen, M. A.; Chuang, I. L., Quantum Computation and Quantum Information (2000), Cambridge, UK: Cambridge University Press, Cambridge, UK · Zbl 1049.81015
[4] Preskill, J., Quantum information and physics: some future directions, Journal of Modern Optics, 47, 2-3, 127-137 (2000) · doi:10.1080/095003400148097
[5] Osborne, T. J.; Nielsen, M. A., Entanglement, quantum phase transitions, and density matrix renormalization, Quantum Information Processing, 1, 1-2, 45-53 (2002) · doi:10.1023/A:1019601218492
[6] Zanardi, P.; Wang, X., Fermionic entanglement in itinerant systems, Journal of Physics. A. Mathematical and General, 35, 37, 7947-7959 (2002) · Zbl 1049.81520 · doi:10.1088/0305-4470/35/37/307
[7] Zeng, X.-X.; Liu, W.-B., Holographic thermalization in Gauss-Bonnet gravity, Physics Letters. B. Particle Physics, Nuclear Physics and Cosmology, 726, 1-3, 481-487 (2013) · Zbl 1311.83059 · doi:10.1016/j.physletb.2013.08.049
[8] Zeng, X.-X.; Liu, X.-M.; Liu, W.-B., Holographic thermalization with a chemical potential in Gauss-Bonnet gravity, Journal of High Energy Physics, 2014, 3, article 031 (2014) · doi:10.1007/JHEP03(2014)031
[9] Zeng, X. X.; Chen, D. Y.; Li, L. F., Holographic thermalization and gravitational collapse in a spacetime dominated by quintessence dark energy, Physical Review D, 91, 4 (2015) · doi:10.1103/physrevd.91.046005
[10] Zeng, X.-X.; Liu, X.-M.; Liu, W.-B., Holographic thermalization in noncommutative geometry, Physics Letters. B. Particle Physics, Nuclear Physics and Cosmology, 744, 48-54 (2015) · Zbl 1330.81134 · doi:10.1016/j.physletb.2015.03.028
[11] Zeng, X. X.; Hu, X. Y.; Li, L. F., Effect of phantom dark energy on holographic thermalization, Chinese Physics Letters, 34, 1 (2017) · doi:10.1088/0256-307X/34/1/010401
[12] Cai, R.; Zeng, X.; Zhang, H., Influence of inhomogeneities on holographic mutual information and butterfly effect, Journal of High Energy Physics, 2017, 7 (2017) · Zbl 1380.81299 · doi:10.1007/JHEP07(2017)082
[13] Cai, R.; Li, L.; Li, L.; Yang, R., Introduction to holographic superconductor models, Science China Physics, Mechanics & Astronomy, 58, 6, 1-46 (2015) · doi:10.1007/s11433-015-5676-5
[14] Amico, L.; Fazio, R.; Osterloh, A.; Vedral, V., Entanglement in many-body systems, Reviews of Modern Physics, 80, 2, 517-576 (2008) · Zbl 1205.81009 · doi:10.1103/RevModPhys.80.517
[15] Laflorencie, N., Quantum entanglement in condensed matter systems, Physics Reports. A Review Section of Physics Letters, 646, 1-59 (2016) · doi:10.1016/j.physrep.2016.06.008
[16] Susskind, L.; Uglum, J., Black hole entropy in canonical quantum gravity and superstring theory, Physical Review. D. Third Series, 50, 4, 2700-2711 (1994) · doi:10.1103/PhysRevD.50.2700
[17] Solodukhin, S. N., Entanglement entropy of black holes, Living Reviews in Relativity, 14, article 8 (2011) · Zbl 1320.83015 · doi:10.12942/lrr-2011-8
[18] Ryu, S.; Takayanagi, T., Holographic derivation of entanglement entropy from the anti-de Sitter space/conformal field theory correspondence, Physical Review Letters, 96, 18 (2006) · Zbl 1228.83110 · doi:10.1103/PhysRevLett.96.181602
[19] Ryu, S.; Takayanagi, T., Aspects of holographic entanglement entropy, Journal of High Energy Physics. A SISSA Journal, 8 (2006) · doi:10.1088/1126-6708/2006/08/045
[20] Johnson, C. V., Large \(N\) phase transitions, finite volume, and entanglement entropy, Journal of High Energy Physics, 2014, article 47 (2014) · doi:10.1007/JHEP03(2014)047
[21] Caceres, E.; Nguyen, P. H.; Pedraza, J. F., Holographic entanglement entropy and the extended phase structure of STU black holes, Journal of High Energy Physics, 2015, 9, article 184 (2015) · Zbl 1388.83400 · doi:10.1007/JHEP09(2015)184
[22] Nguyen, P. H., An equal area law for holographic entanglement entropy of the AdS-RN black hole, Journal of High Energy Physics, 15, 12, article 139 (2015) · Zbl 1388.83491
[23] Zeng, X. X.; Zhang, H.; Li, L. F., Phase transition of holographic entanglement entropy in massive gravity, Physics Letters B, 756, 170-179 (2016) · Zbl 1400.83040 · doi:10.1016/j.physletb.2016.03.013
[24] Dey, A.; Mahapatra, S.; Sarkar, T., Thermodynamics and entanglement entropy with Weyl corrections, Physical Review D - Particles, Fields, Gravitation and Cosmology, 94, 2 (2016) · doi:10.1103/PhysRevD.94.026006
[25] Zeng, X.-X.; Liu, X.-M.; Li, L.-F., Phase structure of the Born-Infeld-anti-de Sitter black holes probed by non-local observables, European Physical Journal C, 76, 11, article 616 (2016) · doi:10.1140/epjc/s10052-016-4463-4
[26] Zeng, X.-X.; Li, L.-F., Holographic Phase Transition Probed by Nonlocal Observables, Advances in High Energy Physics, 2016 (2016) · Zbl 1366.83067 · doi:10.1155/2016/6153435
[27] Zeng, X. X.; Li, L. F., Van der waals phase transition in the framework of holography, Physics Letters B, 764, 100-108 (2017) · Zbl 1369.83057 · doi:10.1016/j.physletb.2016.11.017
[28] Mo, J.-X.; Li, G.-Q.; Lin, Z.-T.; Zeng, X.-X., Revisiting van der Waals like behavior of f(R) AdS black holes via the two point correlation function, Nuclear Physics B, 918, 11-22 (2017) · Zbl 1360.83040 · doi:10.1016/j.nuclphysb.2017.02.015
[29] He, S.; Li, L. F.; Zeng, X. X., Holographic van der waals-like phase transition in the Gauss-Bonnet gravity, Nuclear Physics B, 915, 243-261 (2017) · Zbl 1354.83034 · doi:10.1016/j.nuclphysb.2016.12.005
[30] Zeng, X.; Han, Y., Holographic van der waals phase transition for a hairy black hole, Advances in High Energy Physics, 2017 (2017) · Zbl 1370.83063 · doi:10.1155/2017/2356174
[31] Li, H.-L.; Yang, S.-Z.; Zu, X.-T., Holographic research on phase transitions for a five dimensional AdS black hole with conformally coupled scalar hair, Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 764, 310-317 (2017) · doi:10.1016/j.physletb.2016.11.043
[32] Cadoni, M.; Franzin, E.; Tuveri, M., Van der Waals-like behaviour of charged black holes and hysteresis in the dual {QFT}s, Physics Letters. B. Particle Physics, Nuclear Physics and Cosmology, 768, 393-396 (2017) · doi:10.1016/j.physletb.2017.02.060
[33] Abbott, B. P., Observation of gravitational waves from a binary black hole merger, Physical Review Letters, 116 (2016)
[34] Fierz, M.; Pauli, W., On relativistic wave equations for particles of arbitrary spin in an electromagnetic field, Proceedings of the Royal Society of London Series A: Mathematical and Physical Sciences, 173, 953, 211-232 (1939) · JFM 65.1532.01 · doi:10.1098/rspa.1939.0140
[35] Boulware, D. G.; Deser, S., Can gravitation have a finite range?, Physical Review D, 6, 12, 3368-3382 (1972) · doi:10.1103/PhysRevD.6.3368
[36] de Rham, C.; Gabadadze, G., Generalization of the Fierz-Pauli action, Physical Review D, 82 (2010) · doi:10.1103/PhysRevD.82.044020
[37] De Rham, C.; Gabadadze, G.; Tolley, A. J., Resummation of massive gravity, Physical Review Letters, 106, 23 (2011) · doi:10.1103/PhysRevLett.106.231101
[38] Vegh, D., Holography without translational symmetry, 2013, https://arxiv.org/abs/1301.0537
[39] de Rham, C., Massive gravity, Living Reviews in Relativity, 17, 7 (2014) · Zbl 1320.83018 · doi:10.12942/lrr-2014-7
[40] Hinterbichler, K., Theoretical aspects of massive gravity, Reviews of Modern Physics, 84, 2 (2012) · doi:10.1103/RevModPhys.84.671
[41] Dubovsky, S. L., Phases of massive gravity, Journal of High Energy Physics (2004) · doi:10.1088/1126-6708/2004/10/076
[42] Rubakov, V. A.; Tinyakov, P. G., Infrared-modified gravities and massive gravitons, Physics-Uspekhi, 51, 8, 759-792 (2008) · doi:10.1070/PU2008v051n08ABEH006600
[43] Bebronne, M. V.; Tinyakov, P. G., Black hole solutions in massive gravity, Journal of High Energy Physics, 09, 04, article 100 (2008)
[44] Comelli, D.; Nesti, F.; Pilo, L., Stars and (furry) black holes in Lorentz breaking massive gravity, Physical Review D - Particles, Fields, Gravitation and Cosmology, 83, 8 (2011) · Zbl 1342.83271 · doi:10.1103/PhysRevD.83.084042
[45] Fernando, S., Phase transitions of black holes in massive gravity, Modern Physics Letters A. Particles and Fields, Gravitation, Cosmology, Nuclear Physics, 31, 16 (2016) · Zbl 1339.83043 · doi:10.1142/S0217732316500966
[46] Capela, F.; Nardini, G., Hairy black holes in massive gravity: thermodynamics and phase structure, Physical Review D, 86, 2 (2012) · doi:10.1103/physrevd.86.024030
[47] Mirza, B.; Sherkatghanad, Z., Phase transitions of hairy black holes in massive gravity and thermodynamic behavior of charged AdS black holes in an extended phase space, Physical Review D, 90, 8 (2014) · doi:10.1103/physrevd.90.084006
[48] Fernando, S., P-V criticality in AdS black holes of massive gravity, Physical Review D, 94, 12 (2016) · doi:10.1103/PhysRevD.94.124049
[49] Hawking, S. W.; Page, D. N., Thermodynamics of black holes in anti-de Sitter space, Communications in Mathematical Physics, 87, 4, 577-588 (1982/83) · doi:10.1007/BF01208266
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.