×

Computer-assisted proofs of existence of KAM tori in planetary dynamical models of \(\upsilon\)-And \(\mathbf{b}\). (English) Zbl 1532.70022

Summary: We reconsider the problem of the orbital dynamics of the innermost exoplanet of the \(\upsilon\)-Andromedæsystem (i.e., \(\upsilon\)-And \(\mathbf{b}\)) into the framework of a Secular Quasi-Periodic Restricted Hamiltonian model. This means that we preassign the orbits of the planets that are expected to be the biggest ones in that extrasolar system (namely, \(\upsilon\)-And \(\mathbf{c}\) and \(\upsilon\)-And \(\mathbf{d})\). The Fourier decompositions of their secular motions are injected in the equations describing the orbital dynamics of \(\upsilon\)-And \(\mathbf{b}\) under the gravitational effects exerted by those two exoplanets. By a computer-assisted procedure, we prove the existence of KAM tori corresponding to orbital motions that we consider to be very robust configurations, according to the analysis and the numerical explorations made in our previous article. The computer-assisted assisted proofs are successfully performed for two variants of the Secular Quasi-Periodic Restricted Hamiltonian model, which differs for what concerns the effects of the relativistic corrections on the orbital motion of \(\upsilon\)-And \(\mathbf{b}\), depending on whether they are considered or not.

MSC:

70H08 Nearly integrable Hamiltonian systems, KAM theory
70F15 Celestial mechanics
70H09 Perturbation theories for problems in Hamiltonian and Lagrangian mechanics
70H12 Periodic and almost periodic solutions for problems in Hamiltonian and Lagrangian mechanics
70-08 Computational methods for problems pertaining to mechanics of particles and systems
68V05 Computer assisted proofs of proofs-by-exhaustion type

Software:

CAPD DynSys

References:

[1] Laskar, J., Large scale chaos and marginal stability in the solar system. Celestial Mech Dynam Astronom, 115-162 (1996) · Zbl 0886.70012
[2] Batygin, K.; Morbidelli, A.; Holman, M. J., Chaotic disintegration of the inner solar system. Agron J, 2, 120 (2015)
[3] Hoang, N. H.; Mogavero, F.; Laskar, J., Long-term instability of the inner solar system: numerical experiments. Mon Not R Astron Soc, 1, 1342-1350 (2022)
[4] Mastroianni, R.; Locatelli, U., Secular orbital dynamics of the innermost exoplanet of the \(\upsilon \)-andromedæ system. Celestial Mech Dynam Astronom, 3, 28 (2023) · Zbl 1527.70013
[5] Butler, R. P.; Marcy, G. W.; Fischer, D. A.; Brown, T. M.; Contos, A. R.; Korzennik, S. G.; Nisenson, P.; Noyes, R. W., Evidence for multiple companions to \(\upsilon\) andromedae. Astrophys J, 2, 916 (1999)
[6] Curiel, S.; Cantó, J.; Georgiev, L.; Chávez, C.; Poveda, A., A fourth planet orbiting \(\upsilon\) andromedae. Astron Astrophys, A78 (2011)
[7] McArthur, B. E.; Benedict, G. F.; Barnes, R.; Martioli, E.; Korzennik, S.; Nelan, E.; Butler, R. P., New observational constraints on the \(\upsilon\) andromedae system with data from the hubble space telescope and hobby-eberly telescope. Astrophys J, 2, 1203-1220 (2010)
[8] Deitrick, R.; Barnes, R.; McArthur, B.; Quinn, T. R.; Luger, R.; Antonsen, A.; Benedict, G. F., The three-dimensional architecture of the \(\upsilon\) andromedae planetary system. Astrophys J, 1, 46 (2015)
[9] Locatelli, U.; Caracciolo, C.; Sansottera, M.; Volpi, M., A numerical criterion evaluating the robustness of planetary architectures; applications to the \(\upsilon\) andromedæ system. Proc Int Astronom Union, S364, 65-84 (2021)
[10] Laskar, J., Frequency map analysis and quasiperiodic decompositions
[11] Morbidelli, A.; Giorgilli, A., Superexponential stability of KAM tori. J Stat Phys, 1607-1617 (1995) · Zbl 1080.37512
[12] Giorgilli, A.; Locatelli, U.; Sansottera, M., Secular dynamics of a planar model of the sun-jupiter-saturn-uranus system; effective stability in the light of Kolmogorov and nekhoroshev theories. Regul Chaotic Dyn, 54-77 (2017) · Zbl 1390.70020
[13] Locatelli, U.; Giorgilli, A., Invariant tori in the secular motions of the three-body planetary systems. Celestial Mech Dynam Astronom, 1, 47-74 (2000) · Zbl 0995.70006
[14] Celletti, A.; Chierchia, L., KAM stability and celestial mechanics. Mem Amer Math Soc, 878 (2007) · Zbl 1129.70012
[15] Calleja, R.; Celletti, A.; de la Llave, R., KAM quasi-periodic solutions for the dissipative standard map. Commun Nonlinear Sci Numer Simul (2022) · Zbl 1494.37043
[16] Figueras, J.-L.; Haro, A.; Luque, A., Rigorous computer-assisted application of KAM theory: a modern approach. Found Comput Math, 5, 1123-1193 (2017) · Zbl 1383.37047
[17] Calleja, R.; Celletti, A.; Gimeno, J.; de la Llave, R., KAM quasi-periodic tori for the dissipative spin-orbit problem. Commun Nonlinear Sci Numer Simul (2022) · Zbl 1480.37070
[18] Caracciolo, C.; Locatelli, U.; Sansottera, M.; Volpi, M., Librational KAM tori in the secular dynamics of the \(\upsilon\) andromedæ planetary system. Mon Not R Astron Soc, 2, 2147-2166 (2022)
[19] Danesi, V.; Locatelli, U.; Sansottera, M., Existence proof of librational invariant tori in an averaged model of HD60532 planetary system. Celestial Mech Dynam Astronom, 3, 24 (2023) · Zbl 1529.70015
[20] Kapela, T.; Mrozek, M.; Wilczak, D.; Zgliczynski, P., CAPD::DynSys: A flexible c++ toolbox for rigorous numerical analysis of dynamical systems. Commun Nonlinear Sci Numer Simul (2021) · Zbl 1473.37004
[21] Kapela, T.; Wilczak, D.; Zgliczynski, P., Recent advances in a rigorous computation of poincaré maps. Commun Nonlinear Sci Numer Simul (2022) · Zbl 1503.37088
[22] Laskar, J.; Robutel, P., High order symplectic integrators for perturbed Hamiltonian systems. Celestial Mech Dynam Astronom, 1, 39-62 (2001) · Zbl 1013.70002
[23] Murray, C. D.; Dermott, S. F., Solar system dynamics (1999), Cambridge University Press · Zbl 0957.70002
[24] Morbidelli, A., Modern celestial mechanics: Aspects of solar system dynamics (2002) · Zbl 1411.70019
[25] Locatelli, U.; Caracciolo, C.; Sansottera, M.; Volpi, M., Invariant KAM tori: from theory to applications to exoplanetary systems. Springer Proc Math Stat, 1-45 (2022)
[26] Caracciolo, C.; Locatelli, U., Elliptic tori in FPU non-linear chains with a small number of nodes. Commun Nonlinear Sci Numer Simul (2021) · Zbl 1462.37072
[27] Gröbner, W., Die lie-reihen und ihre anwendungen (1967), Deutscher Verlag der Wissenschaften · Zbl 0157.40301
[28] Giorgilli, A.
[29] Mastroianni, R., Hamiltonian secular theory and KAM stability in exoplanetary systems with 3D orbital architecture (2023), Dep. of Mathematics Tullio-Levi Civita, Univ. of Padua, Ph.D. thesis
[30] Kolmogorov, A., Preservation of conditionally periodic movements with small change in the hamilton function. Dokl Akad Nauk SSSR, 527-530 (1954), English translation in Casati, G. and Ford, J. (eds.): Lecture Notes in Physics, 93:51-56, 1979 · Zbl 0441.70018
[31] Benettin, G.; Galgani, L.; Giorgilli, A.; Strelcyn, J.-M., A proof of Kolmogorov’s theorem on invariant tori using canonical transformations defined by the Lie method. Nuovo Cimento, 201-223 (1984)
[32] Giorgilli, A.; Locatelli, U., Kolmogorov theorem and classical perturbation theory. J Appl Math Phys (ZAMP), 220-261 (1997) · Zbl 0886.58098
[33] Celletti, A.; Giorgilli, A.; Locatelli, U., Improved estimates on the existence of invariant tori for Hamiltonian systems. Nonlinearity, 2, 397 (2000) · Zbl 0989.37051
[34] Valvo, L.; Locatelli, U., Hamiltonian control of magnetic field lines: Computer assisted results proving the existence of KAM barriers. J Comput Dyn, 505-527 (2022) · Zbl 1510.37096
[35] Stefanelli, L.; Locatelli, U., Kolmogorov’s normal form for equations of motion with dissipative effects. Discr Contin Dyn Syst, 7, 2561-2593 (2012) · Zbl 1287.37040
[36] Giorgilli, A., Notes on Hamiltonian dynamical systems (2022), Cambridge University Press · Zbl 1517.37001
[37] Migaszewski, C.; Goździewski, K., Secular dynamics of a coplanar, non-resonant planetary system under the general relativity and quadrupole moment perturbations. Mon Not R Astron Soc, 1, 2-18 (2009)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.