×

Secular orbital dynamics of the innermost exoplanet of the \(\upsilon\)-Andromedæ system. (English) Zbl 1527.70013

Celest. Mech. Dyn. Astron. 135, No. 3, Paper No. 28, 41 p. (2023); correction ibid. 135, No. 5, Paper No. 49, 3 p. (2023).
The \(v\)-Andromedæ system was the first ever to be discovered among the ones that host at least two exoplanets.
This article deals with the motion of \(v\)-And \({\mathbf b}\), which is the innermost planet among those discovered in the extrasolar system around the star \(v\)-Andromedæ A. The main aim is to extend the study of the stability to the orbital dynamics of \(v\)-And \({\mathbf b}\), still adopting a hierarchical approach.
The authors introduce a quasi-periodic restricted Hamiltonian to describe the secular motion of a small-mass planet in a multi-planetary system. Also, they preassign the orbits of the Super-Jupiter exoplanets \(v\)-And \({\mathbf c}\) and \(v\)-And \({\mathbf d}\) in a stable configuration. The Fourier decompositions of their secular motions are reconstructed by using the well-known technique of the (so-called) frequency analysis and are injected in the equations describing the orbital dynamics of \(v\)-And \({\mathbf b}\) under the gravitational effects exerted by those two external exoplanets (that are expected to be major ones in such an extrasolar system).
In the first part of the paper, the frequency analysis is used to reconstruct the Fourier decompositions of the secular motions of the outer exoplanets \(v\)-And \({\mathbf c}\) and \(v\)-And \({\mathbf d}\). Then, in Section 3 and 4, the secular quasi-periodic restricted Hamiltonian model (with \(2 + 3/2\) degrees of freedom) is introduced and validated through the comparison with several numerical integrations of the complete four-body problem, hosting planets \({\mathbf b}\), \({\mathbf c}\), \({\mathbf d}\) of the \(v\)-Andromedæ system. The double normalization procedure allowing to perform a sort of averaging which further simplifies the model is described with a rather general approach. In Section 5, this normal form procedure is applied to the quasi-periodic restricted Hamiltonian, in such a way to derive an integrable model with 2 degrees of freedom describing the secular orbital dynamics of \(v\)-And \({\mathbf b}\). Such a simplified model is used to study \(v\)-And \({\mathbf b}\) stability domain in the parameters space of the initial values of the inclination and the longitude of node. All this computational procedure is repeated in the last section, starting from a version of the secular quasi-periodic restricted Hamiltonian model which includes also relativistic corrections; this allows to appreciate the effects on the orbital dynamics due to general relativity.

MSC:

70F15 Celestial mechanics
70F10 \(n\)-body problems
70H09 Perturbation theories for problems in Hamiltonian and Lagrangian mechanics

References:

[1] Butler, RP; Marcy, GW; Fischer, DA; Brown, TM; Contos, AR; Korzennik, SG, Evidence for multiple companions to \(\upsilon\) Andromedae, Astrophys. J., 526, 2, 916 (1999) · doi:10.1086/308035
[2] Caracciolo, C., Normal form for lower dimensional elliptic tori in Hamiltonian systems, Math. Eng., 4, 6, 1-40 (2022) · Zbl 1525.37065 · doi:10.3934/mine.2022051
[3] Caracciolo, C.; Locatelli, U.; Sansottera, M.; Volpi, M., Librational KAM tori in the secular dynamics of the \(\upsilon\) Andromedæ planetary system, Mon. Not. R. Astron. Soc., 510, 2, 2147-2166 (2022) · doi:10.1093/mnras/stab3514
[4] Curiel, S.; Cantó, J.; Georgiev, L.; Chávez, C.; Poveda, A., A fourth planet orbiting \(\upsilon\) Andromedae, Astron. Astrophys., 525, A78 (2011) · doi:10.1051/0004-6361/201015693
[5] Deitrick, R.; Barnes, R.; McArthur, B.; Quinn, TR; Luger, R.; Antonsen, A., The three-dimensional architecture of the \(\upsilon\) Andromedae planetary system, Astrophys. J., 798, 1, 46 (2015) · doi:10.1088/0004-637X/798/1/46
[6] Giorgilli, A.: Notes on exponential stability of Hamiltonian systems. Pubblicazioni della Classe di Scienze, Scuola Normale Superiore, Pisa. Centro di Ricerca Matematica “Ennio De Giorgi” (2003)
[7] Giorgilli, A., Notes on Hamiltonian Dynamical Systems (2022), Cambridge: Cambridge University Press, Cambridge · Zbl 1517.37001 · doi:10.1017/9781009151122
[8] Giorgilli, A.; Delshams, A.; Fontich, E.; Galgani, L.; Simó, C., Effective stability for a Hamiltonian system near an elliptic equilibrium point, with an application to the restricted three-body problem, J. Differ. Equ., 77, 167-198 (1989) · Zbl 0675.70027 · doi:10.1016/0022-0396(89)90161-7
[9] Giorgilli, A.; Locatelli, U.; Sansottera, M., On the convergence of an algorithm constructing the normal form for lower dimensional elliptic tori in planetary systems, Celest. Mech. Dyn. Astron., 119, 397-424 (2014) · Zbl 1298.70029 · doi:10.1007/s10569-014-9562-7
[10] Giorgilli, A.; Locatelli, U.; Sansottera, M., Secular dynamics of a planar model of the Sun-Jupiter-Saturn-Uranus system; effective stability in the light of Kolmogorov and Nekhoroshev theories, Regul. Chaotic Dyn., 22, 54-77 (2017) · Zbl 1390.70020 · doi:10.1134/S156035471701004X
[11] Gröbner, W., Die Lie-reihen und ihre Anwendungen (1967), Berlin: Deutscher Verlag der Wissenschaften, Berlin · Zbl 0157.40301
[12] Hoang, NH; Mogavero, F.; Laskar, J., Long-term instability of the inner Solar System: numerical experiments, Mon. Not. R. Astron. Soc., 514, 1, 1342-1350 (2022) · doi:10.1093/mnras/stac1299
[13] Laskar, J.; Simó, C., Introduction to frequency map analysis, Hamiltonian Systems with Three or More Degrees of Freedom, 134-150 (1999), Netherlands: Springer, Netherlands · Zbl 0971.70006 · doi:10.1007/978-94-011-4673-9_13
[14] Laskar, J.; Lega, E.; Benest, D.; Froeschlé, C., Frequency map analysis and quasiperiodic decompositions, Hamiltonian Systems and Fourier Analysis: New Prospects for Gravitational Dynamics (2005), Cambridge: Cambridge Scientific Pub Ltd, Cambridge · Zbl 1131.85001
[15] Laskar, J.; Gastineau, M., Existence of collisional trajectories of Mercury, Mars and Venus with the Earth, Nature, 459, 7248, 817-819 (2009) · doi:10.1038/nature08096
[16] Laskar, J.; Robutel, P., High order symplectic integrators for perturbed Hamiltonian systems, Celest. Mech. Dyn. Astron., 80, 1, 39-62 (2001) · Zbl 1013.70002 · doi:10.1023/A:1012098603882
[17] Locatelli, U., Caracciolo, C., Sansottera, M., Volpi, M.: Invariant KAM tori: from theory to applications to exoplanetary systems. I-Celmech training school, Springer PROMS, (2022)
[18] Locatelli, U.; Caracciolo, C.; Sansottera, M.; Volpi, M., A numerical criterion evaluating the robustness of planetary architectures; applications to the \(\upsilon\) Andromedæ system, Proc. Int. Astron. Union, 15, S364, 65-84 (2022) · doi:10.1017/S1743921322000461
[19] Locatelli, U.; Giorgilli, A., Invariant tori in the secular motions of the three-body planetary systems, Celest. Mech. Dyn. Astron., 78, 1, 47-74 (2000) · Zbl 0995.70006 · doi:10.1023/A:1011139523256
[20] Mastroianni, R.: Hamiltonian secular theory and KAM stability in exoplanetary systems with 3D orbital architecture. Ph.D. Thesis, Dep. of Mathematics “Tullio-Levi Civita”, University of Padua (2023)
[21] Mayor, M.; Queloz, D., A Jupiter-mass companion to a solar-type star, Nature, 378, 6555, 355-359 (1995) · doi:10.1038/378355a0
[22] McArthur, BE; Benedict, GF; Barnes, R.; Martioli, E.; Korzennik, S.; Nelan, E., New observational constraints on the \(\upsilon\) Andromedae system with data from the Hubble Space Telescope and Hobby-Eberly Telescope, Astrophys. J., 715, 2, 1203-1220 (2010) · doi:10.1088/0004-637X/715/2/1203
[23] Migaszewski, C.; Goździewski, K., Secular dynamics of a coplanar, non-resonant planetary system under the general relativity and quadrupole moment perturbations, Mon. Not. R. Astron. Soc., 392, 1, 2-18 (2009) · doi:10.1111/j.1365-2966.2008.14025.x
[24] Mogavero, F.; Laskar, J., The origin of chaos in the solar system through computer algebra, Astron. Astrophys., 662, L3 (2022) · doi:10.1051/0004-6361/202243327
[25] Morbidelli, A.: Modern celestial mechanics: aspects of solar system dynamics (2002) · Zbl 1411.70019
[26] Murray, CD; Dermott, SF, Solar System Dynamics (1999), Cambridge: Cambridge University Press, Cambridge · Zbl 0957.70002
[27] Piskorz, D.; Benneke, B.; Crockett, NR; Lockwood, AC; Blake, GA; Barman, TS, Detection of water vapor in the thermal spectrum of the non-transiting hot Jupiter Upsilon Andromedae b, Astron. J., 154, 2, 78 (2017) · doi:10.3847/1538-3881/aa7dd8
[28] Volpi, M., Roisin, A., Libert, A.-S.: The 3D secular dynamics of radial-velocity-detected planetary systems. Astron. Astrophys. 626, A74 (2019)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.