×

Secular dynamics of a planar model of the Sun-Jupiter-Saturn-Uranus system; effective stability in the light of Kolmogorov and Nekhoroshev theories. (English) Zbl 1390.70020

Summary: We investigate the long-time stability of the Sun-Jupiter-Saturn-Uranus system by considering a planar secular model, which can be regarded as a major refinement of the approach first introduced by Lagrange. Indeed, concerning the planetary orbital revolutions, we improve the classical circular approximation by replacing it with a solution that is invariant up to order two in the masses; therefore, we investigate the stability of the secular system for rather small values of the eccentricities. First, we explicitly construct a Kolmogorov normal form to find an invariant KAM torus which approximates very well the secular orbits. Finally, we adapt the approach that underlies the analytic part of Nekhoroshev’s theorem to show that there is a neighborhood of that torus for which the estimated stability time is larger than the lifetime of the Solar System. The size of such a neighborhood, compared with the uncertainties of the astronomical observations, is about ten times smaller.

MSC:

70F10 \(n\)-body problems
37J40 Perturbations of finite-dimensional Hamiltonian systems, normal forms, small divisors, KAM theory, Arnol’d diffusion
37N05 Dynamical systems in classical and celestial mechanics
70-08 Computational methods for problems pertaining to mechanics of particles and systems
70H08 Nearly integrable Hamiltonian systems, KAM theory

References:

[1] Arnol’d, V. I., Proof of a Theorem of A.N. Kolmogorov on the Invariance of Quasi-Periodic Motions under Small Perturbations of the Hamiltonian, Russian Math. Surveys, 1963, vol. 18, no. 5, pp. 9-36; see also: Uspekhi Mat. Nauk, 1963, vol. 18, no. 5, pp. 13-40. · Zbl 0129.16606 · doi:10.1070/RM1963v018n05ABEH004130
[2] Arnol’d, V. I., Small Denominators and Problems of Stability of Motion in Classical and Celestial Mechanics, Russian Math. Surveys, 1963, vol. 18, no. 6, pp. 85-191; see also: Uspekhi Mat. Nauk, 1963, vol. 18, no. 6(114), pp. 91-192. · Zbl 0135.42701 · doi:10.1070/RM1963v018n06ABEH001143
[3] Bernard, P.; Kaloshin, V.; Zhang, K., Arnold Diffusion in Arbitrary Degrees of Freedom and Crumpled 3-Dimensional Normally Hyperbolic Invariant Cylinders (2017)
[4] Biasco, L., Chierchia, L., and Valdinoci, E., N-Dimensional Elliptic Invariant Tori for the Planar (N +1)- Body Problem, SIAM J. Math. Anal., 2006, vol. 37, no. 5, pp. 1560-1588. · Zbl 1096.70005 · doi:10.1137/S0036141004443646
[5] Birkhoff, G.D., Dynamical Systems, Providence,R.I.: AMS, 1966. · Zbl 0171.05402
[6] Celletti, A., Construction of Librational Invariant Tori in the Spin-Orbit Problem, Z. Angew. Math. Phys., 1994, vol. 45, no. 1, pp. 61-80. · Zbl 0799.70005 · doi:10.1007/BF00942847
[7] Celletti, A. and Chierchia, L., KAM Stability and Celestial Mechanics, Mem. Amer. Math. Soc., vol. 187, no. 878, Providence,R.I.: AMS, 2007. · Zbl 1129.70012
[8] Celletti, A., Falcolini, C., and Locatelli, U., On the Break-Down Threshold of Invariant Tori in Four Dimensional Maps, Regul. Chaotic Dyn., 2004, vol. 9, no. 3, pp. 227-253. · Zbl 1102.70011 · doi:10.1070/RD2004v009n03ABEH000278
[9] Gabern, F., Jorba, A., and Locatelli, U., On the Construction of the Kolmogorov Normal Form for the Trojan Asteroids, Nonlinearity, 2005, vol. 18, no. 4, pp. 1705-1734. · Zbl 1078.70013 · doi:10.1088/0951-7715/18/4/017
[10] Giorgilli, A.; Roy, A. E. (ed.); Steves, B. D. (ed.), Quantitative Methods in Classical Perturbation Theory, 21-37 (1995) · Zbl 0882.34057 · doi:10.1007/978-1-4899-1085-1_3
[11] Giorgilli, A. and Morbidelli, A., Invariant KAM Tori and Global Stability for Hamiltonian Systems, Z. Angew. Math. Phys., 1997, vol. 48, no. 1, pp. 102-134. · Zbl 0881.58032 · doi:10.1007/PL00001462
[12] Giorgilli, A., Locatelli, U., and Sansottera, M., Kolmogorov and Nekhoroshev Theory for the Problem of Three Bodies, Celestial Mech. Dynam. Astronom., 2009, vol. 104, nos. 1-2, pp. 159-173. · Zbl 1165.70010 · doi:10.1007/s10569-009-9192-7
[13] Giorgilli, A., Locatelli, U., and Sansottera, M., On the Convergence of an Algorithm Constructing the Normal Form for Elliptic Lower Dimensional Tori in Planetary Systems, Celestial Mech. Dynam. Astronom., 2014, vol. 119, nos. 3-4, pp. 397-424. · Zbl 1298.70029 · doi:10.1007/s10569-014-9562-7
[14] Giorgilli, A.; Sansottera, M.; Cincotta, P. M. (ed.); Giordano, C. M. (ed.); Efthymiopoulos, C. (ed.), Methods of Algebraic Manipulation in Perturbation Theory, 147-183 (2012)
[15] Giorgilli, A. and Skokos, Ch., On the Stability of the Trojan Asteroids, Astron. Astroph., 1997, vol. 317, pp. 254-261.
[16] Kolmogorov, A. N.; Casati, G. (ed.); Ford, J. (ed.), Preservation of Conditionally Periodic Movements with Small Change in the Hamilton Function, 51-56 (1979) · Zbl 0441.70018 · doi:10.1007/BFb0021737
[17] Kuznetsov, E. D. and Kholshevnikov, K.V., Dynamical Evolution of Weakly Disturbed Two-Planetary System on Cosmogonic Time Scales: The Sun-Jupiter-Saturn System, Sol. Syst. Res., 2006, vol. 40, no. 3, pp. 239-250. · doi:10.1134/S0038094606030087
[18] Leontovich, A.M., On the Stability of the Lagrange Periodic Solutions for the Reduced Problem of Three Bodies, Soviet Math. Dokl., 1962, vol. 3, no. 2, pp. 425-430; see also: Dokl. Akad. Nauk SSSR, 1962, vol. 143, no. 3, pp. 525-529. · Zbl 0123.18206
[19] Lagrange, J.-L., Sur l’altération des moyens mouvements des planètes, 255-271 (1869)
[20] Lagrange, J.-L., Théorie des variations séculaires des éléments des planètes (Premiere partie), in OEuvres: Vol. 5, Paris: Gauthier-Villars, 1870, pp. 125-207.
[21] Lagrange, J.-L., Théorie des variations séculaires des éléments des planètes (Seconde partie), 211-344 (1870)
[22] Laplace, P.-S., Mémoire sur les solutions particulières des équations différentielles et sur les inégalités séculaires des planètes, in OEuvres: Vol. 8, Paris: Gauthier-Villars, 1891, pp. 325-366.
[23] Laplace, P.-S., Mémoire sur les inégalités séculaires des planètes et des satellites, 49-92 (1895)
[24] Laplace, P.-S., Théorie de Jupiter et de Saturne: Section seconde. Théorie de Saturne, 162-207 (1895)
[25] Laskar, J., Secular Evolution of the Solar System over 10 Million Years, Astronom. Astrophys., 1988, vol. 198, nos. 1-2, pp. 341-362
[26] Laskar, J.; Benest, D. (ed.); Froeschlé, C. (ed.), Systèmes de variables et éléments, 63-87 (1989), Gif-sur-Yvette
[27] Laskar, J., A Numerical Experiment on the Chaotic Behaviour of the Solar System, Nature, 1989, vol. 338, pp. 237-238. · doi:10.1038/338237a0
[28] Laskar, J.; Benest, D. (ed.); Froeschlé, C. (ed.); Lega, E. (ed.), Frequency Map Analysis and Quasiperiodic Decompositions, 99-133 (2005), Cambridge
[29] Laskar, J. and Gastineau, M., Existence of Collisional Trajectories of Mercury, Mars and Venus with the Earth, Nature, 2009, vol. 459, pp. 817-819.
[30] Laskar, J. and Robutel, Ph., Stability of the Planetary Three-Body Problem: 1. Expansion of the Planetary Hamiltonian, Celestial Mech. Dynam. Astronom., 1995, vol. 62, no. 3, pp. 193-217. · Zbl 0837.70008 · doi:10.1007/BF00692088
[31] Lhotka, Ch., Efthymiopoulos, C., and Dvorak, R., Nekhoroshev Stability at L4 or L5 in the Elliptic-Restricted Three-Body Problem: Application to the Trojan Asteroids, Mon. Not. R. Astron. Soc., 2008, vol. 384, no. 3, pp. 1165-1177. · doi:10.1111/j.1365-2966.2007.12794.x
[32] Libert, A.-S. and Henrard, J., Analytical Study of the Proximity of Exoplanetary Systems to Mean-Motion Resonances, Astronom. Astrophys., 2007, vol. 461, no. 2, pp. 759-763. · doi:10.1051/0004-6361:20065767
[33] Libert, A.-S. and Sansottera, M., On the Extension of the Laplace-Lagrange Secular Theory to Order Two in the Masses for Extrasolar Systems, Celestial Mech. Dynam. Astronom., 2013, vol. 117, no. 2, pp. 149-168. · Zbl 1293.70057 · doi:10.1007/s10569-013-9501-z
[34] Littlewood, J.E., On the Equilateral Configuration in the Restricted Problem of Three Bodies, Proc. London Math. Soc. (3), 1959, vol. 9, pp. 343-372. · Zbl 0092.16802 · doi:10.1112/plms/s3-9.3.343
[35] Littlewood, J.E., The Lagrange Configuration in Celestial Mechanics, Proc. London Math. Soc. (3), 1959, vol. 9, pp. 525-543. · Zbl 0093.17302 · doi:10.1112/plms/s3-9.4.525
[36] Locatelli, U. and Giorgilli, A., Invariant Tori in the Secular Motions of the Three-Body Planetary Systems, Celestial Mech. Dynam. Astronom., 2000, vol. 78, nos. 1-4, pp. 47-74. · Zbl 0995.70006 · doi:10.1023/A:1011139523256
[37] Locatelli, U. and Giorgilli, A., Construction of the Kolmogorov’s Normal Form for a Planetary System, Regul. Chaotic Dyn., 2005, vol. 10, no. 2, pp. 153-171. · Zbl 1128.70304 · doi:10.1070/RD2005v010n02ABEH000309
[38] Locatelli, U. and Giorgilli, A., Invariant Tori in the Sun-Jupiter-Saturn System, Discrete Contin. Dyn. Syst. Ser. B, 2007, vol. 7, no. 2, pp. 377-398. · Zbl 1129.70015 · doi:10.3934/dcdsb.2007.7.377
[39] Morbidelli, A. and Giorgilli, A., Superexponential Stability of KAM Tori, J. Statist. Phys., 1995, vol. 78, nos. 5-6, pp. 1607-1617. · Zbl 1080.37512 · doi:10.1007/BF02180145
[40] Moser, J., Stabilitätsverhalten kanonischer Differentialgleichungssysteme, Nachr. Akad. Wiss. Göttingen. Math.-Phys. Kl. IIa, 1955, vol. 1955, pp. 87-120. · Zbl 0066.33901
[41] Moser, J., On Invariant Curves of Area-Preserving Mappings of an Annulus, Nachr. Akad. Wiss. Göttingen. Math.-Phys. Kl. IIa, 1962, vol. 1962, pp. 1-20. · Zbl 0107.29301
[42] Moser, J., Stable and Random Motions in Dynamical Systems, Princeton: Princeton Univ. Press, 1973. · Zbl 0271.70009
[43] Murray, N. and Holman, M., The Origin of Chaos in Outer Solar System, Science, 1999, vol. 283, no. 5409, pp. 1877-1881. · doi:10.1126/science.283.5409.1877
[44] Nekhoroshev, N. N., An Exponential Estimate of the Stability Time of Near-Integrable Hamiltonian Systems, Russian Math. Surveys, 1977, vol. 32, no. 6, pp. 1-65; see also: Uspekhi Mat. Nauk, 1977, vol. 32, no. 6(198), pp. 5-66. · Zbl 1266.70033
[45] Nekhoroshev, N. N., An Exponential Estimate of the Time of Stability of Nearly Integrable Hamiltonian Systems: 2, Trudy Sem. Petrovsk., 1979, no. 5, pp. 5-50 (Russian). · Zbl 0473.34021
[46] Poincaré, H., Le¸cons de mécanique céleste: Vol. 1. Théorie générale des perturbations planetaires, Paris: Gauthier-Villars, 1905. · JFM 36.0993.01
[47] Sansottera, M., Locatelli, U., and Giorgilli, A., A Semi-Analytic Algorithm for Constructing Lower Dimensional Elliptic Tori in Planetary Systems, Celestial Mech. Dynam. Astronom., 2011, vol. 111, no. 3, pp. 337-361. · Zbl 1266.70033 · doi:10.1007/s10569-011-9375-x
[48] Sansottera, M., Locatelli, U., and Giorgilli, A., On the Stability of the Secular Evolution of the Planar Sun-Jupiter-Saturn-Uranus System, Math. Comput. Simulation, 2013, vol. 88, pp. 1-14. · Zbl 1492.70010 · doi:10.1016/j.matcom.2010.11.018
[49] Skokos, Ch. and Dokoumetzidis, A., Effective Stability of the Trojan Asteroids, Astron. Astroph., 2001, vol. 367, pp. 729-736. · doi:10.1051/0004-6361:20000456
[50] Standish, E.M., JPL Planetary and Lunar Ephemerides, DE405/LE405: Interoffice memorandum (Jet Propulsion Laboratory), IOM 312.F 98 048, 1998, 18 pp.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.