×

Deformation of the spectrum for Darboux-Treibich-Verdier potential along \(\mathrm{Re}\,\tau =\frac{1}{2}\). (English) Zbl 1532.34086

The paper under review deals with the spectrum \(\sigma(L)\) of the complex Hill operator \(L\) with Darboux-Treibich-Verdier potential \[ L=\frac{d^2}{dx^2}-6\varrho(x+z_0;\tau)-2\varrho(x+\frac{1}{2}+z_0;\tau) \text{ in } L^2 (\mathbb{R},\mathbb{C}). \] Here \(\varrho(z;\tau)\) is the Weierstrass elliptic function with periods 1, \(\tau\) and \(z_0 \in \mathbb{C}\) are chosen such that the differential operator \(L\) has no singularities in \(\mathbb{R}\). The author focuses on the deformation of the spectrum with \(\tau=\frac{1}{2}+ ib\) as \(b>0\) varies.

MSC:

34L05 General spectral theory of ordinary differential operators
34L40 Particular ordinary differential operators (Dirac, one-dimensional Schrödinger, etc.)
34B30 Special ordinary differential equations (Mathieu, Hill, Bessel, etc.)
Full Text: DOI

References:

[1] V. Batchenko and F. Gesztesy, On the spectrum of Schrödinger operators with quasi-periodic algebro-geometric KdV potentials. J. Anal. Math. 95 (2005), 333-387 Zbl 1088.34071 MR 2145569 · Zbl 1088.34071 · doi:10.1007/BF02791507
[2] B. Birnir, Complex Hill’s equation and the complex periodic Korteweg-de Vries equa-tions. Comm. Pure Appl. Math. 39 (1986), no. 1, 1-49 Zbl 0592.47004 MR 820337 · Zbl 0592.47004 · doi:10.1002/cpa.3160390102
[3] J. L. Burchnall and T. W. Chaundy, Commutative Ordinary Differential Operators. Proc. London Math. Soc. (2) 21 (1923), 420-440 Zbl 49.0311.03 MR 1575373 · JFM 49.0311.03 · doi:10.1112/plms/s2-21.1.420
[4] C.-L. Chai, C.-S. Lin, and C.-L. Wang, Mean field equations, hyperelliptic curves and modular forms: I. Camb. J. Math. 3 (2015), no. 1-2, 127-274 Zbl 1327.35116 MR 3356357 · Zbl 1327.35116 · doi:10.4310/CJM.2015.v3.n1.a3
[5] Z. Chen and C. S. Lin, Distribution of critical points of the classical Eisenstein series E 4 . Preprint
[6] C.-C. Chen, C.-S. Lin, and G. Wang, Concentration phenomena of two-vortex solutions in a Chern-Simons model. Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 3 (2004), no. 2, 367-397 Zbl 1170.35413 MR 2075988 · Zbl 1170.35413 · doi:10.2422/2036-2145.2004.2.04
[7] E. Fu 380
[8] Z. Chen, E. Fu, and C.-S. Lin, Spectrum of the Lamé operator and application, I: Deform-ation along Re D 1 · Zbl 1468.34116 · doi:10.1016/j.aim.2021.107699
[9] Adv. Math. 383 (2021), article no. 107699 Zbl 1468.34116 MR 4233282
[10] Z. Chen, E. Fu, and C.-S. Lin, A necessary and sufficient condition for the Darboux-Treibich-Verdier potential with its spectrum contained in R. Amer. J. Math. 144 (2022), no. 3, 851-872 Zbl 1498.81074 MR 4436146 · Zbl 1498.81074 · doi:10.1353/ajm.2022.0017
[11] Z. Chen, T.-J. Kuo, and C.-S. Lin, The geometry of generalized Lamé equation, I. J. Math. Pures Appl. (9) 127 (2019), 89-120 Zbl 1416.33027 MR 3960139 · Zbl 1416.33027 · doi:10.1016/j.matpur.2018.08.004
[12] Z. Chen, T.-J. Kuo, and C.-S. Lin, The geometry of generalized Lamé equation, II: Exist-ence of pre-modular forms and application. J. Math. Pures Appl. (9) 132 (2019), 251-272 Zbl 1428.33038 MR 4030254 · Zbl 1428.33038 · doi:10.1016/j.matpur.2019.05.004
[13] Z. Chen and C.-S. Lin, On algebraic multiplicity of (anti)periodic eigenvalues of Hill’s equations. Proc. Amer. Math. Soc. 146 (2018), no. 7, 3039-3047 Zbl 1387.34043 MR 3787364 · Zbl 1387.34043 · doi:10.1090/proc/14003
[14] Z. Chen and C.-S. Lin, Critical points of the classical Eisenstein series of weight two. J. Differential Geom. 113 (2019), no. 2, 189-226 Zbl 1471.11138 MR 4023291 · Zbl 1471.11138 · doi:10.4310/jdg/1571882423
[15] Z. Chen and C.-S. Lin, Sharp nonexistence results for curvature equations with four sin-gular sources on rectangular tori. Amer. J. Math. 142 (2020), no. 4, 1269-1300 Zbl 1448.35244 MR 4124120 · Zbl 1448.35244 · doi:10.1353/ajm.2020.0028
[16] Z. Chen and C.-S. Lin, Spectrum of the Lamé operator and application, II: When an end-point is a cusp. Comm. Math. Phys. 378 (2020), no. 1, 335-368 Zbl 1451.34108 MR 4124990 · Zbl 1451.34108 · doi:10.1007/s00220-020-03818-w
[17] A. Eremenko and A. Gabrielov, Spherical rectangles. Arnold Math. J. 2 (2016), no. 4, 463-486 Zbl 1365.30006 MR 3564884 · Zbl 1365.30006 · doi:10.1007/s40598-016-0055-5
[18] E. Fu, Spectrum of the Lamé operator along Re D 1=2 W The genus 3 case. 2021, arXiv:2111.15059
[19] F. Gesztesy and H. Holden, Soliton equations and their algebro-geometric solutions. Vol. I. Camb. Stud. Adv. Math. 79, Cambridge University Press, Cambridge, 2003 Zbl 1061.37056 MR 1992536 · Zbl 1061.37056 · doi:10.1017/CBO9780511546723
[20] F. Gesztesy and R. Weikard, Floquet theory revisited. In Differential equations and math-ematical physics (Birmingham, AL, 1994), pp. 67-84, International Press, Boston, MA, 1995 Zbl 0946.47031 MR 1703573 · Zbl 0946.47031
[21] F. Gesztesy and R. Weikard, Treibich-Verdier potentials and the stationary (m)KdV hier-archy. Math. Z. 219 (1995), no. 3, 451-476 Zbl 0830.35119 MR 1339715 · Zbl 0830.35119 · doi:10.1007/BF02572375
[22] F. Gesztesy and R. Weikard, Picard potentials and Hill’s equation on a torus. Acta Math. 176 (1996), no. 1, 73-107 Zbl 0927.37040 MR 1395670 · Zbl 0927.37040 · doi:10.1007/BF02547336
[23] W. A. Haese-Hill, M. A. Hallnäs, and A. P. Veselov, On the spectra of real and complex Lamé operators. SIGMA Symmetry Integrability Geom. Methods Appl. 13 (2017), article no. 049 Zbl 1385.34061 MR 3667223 · Zbl 1385.34061 · doi:10.3842/SIGMA.2017.049
[24] G. Lamé, Sur les surfaces isothermes dans les corps homogènes en équilibre de températ-ure. J. Math. Pures Appl. 2 (1837), 147-188
[25] C.-S. Lin and C.-L. Wang, Elliptic functions, Green functions and the mean field equations on tori. Ann. of Math. (2) 172 (2010), no. 2, 911-954 Zbl 1207.35011 MR 2680484 · Zbl 1207.35011 · doi:10.4007/annals.2010.172.911
[26] Deformation of the spectrum for Darboux-Treibich-Verdier potential along Re D 1 2 381
[27] C.-S. Lin and C.-L. Wang, Mean field equations, hyperelliptic curves and modular forms: II. J. Éc. polytech. Math. 4 (2017), 557-593 Zbl 1376.33022 MR 3665608 · Zbl 1376.33022 · doi:10.5802/jep.51
[28] C.-S. Lin and C.-L. Wang, Geometric quantities arising from bubbling analysis of mean field equations. Comm. Anal. Geom. 28 (2020), no. 6, 1289-1313 Zbl 1458.35203 MR 4184820 · Zbl 1458.35203 · doi:10.4310/CAG.2020.v28.n6.a2
[29] C.-S. Lin and S. Yan, Existence of bubbling solutions for Chern-Simons model on a torus. Arch. Ration. Mech. Anal. 207 (2013), no. 2, 353-392 Zbl 1260.35155 MR 3005320 · Zbl 1260.35155 · doi:10.1007/s00205-012-0575-7
[30] F. S. Rofe-Beketov, On the spectrum of non-selfadjoint differential operators with periodic coefficients. Dokl. Akad. Nauk SSSR 152 (1963), 1312-1315 Zbl 0199.14002 MR 0157033 · Zbl 0199.14002
[31] K. Takemura, The Heun equation and the Calogero-Moser-Sutherland system. I. The Bethe Ansatz method. Comm. Math. Phys. 235 (2003), no. 3, 467-494 Zbl 1086.81051 MR 1974511 · Zbl 1086.81051 · doi:10.1007/s00220-002-0784-2
[32] K. Takemura, The Heun equation and the Calogero-Moser-Sutherland system. II. Per-turbation and algebraic solution. Electron. J. Differential Equations (2004), article no. 15 Zbl 1087.81029 MR 2036199 · Zbl 1087.81029
[33] K. Takemura, The Heun equation and the Calogero-Moser-Sutherland system. III. The finite-gap property and the monodromy. J. Nonlinear Math. Phys. 11 (2004), no. 1, 21-46 Zbl 1087.81028 MR 2031210 · Zbl 1087.81028 · doi:10.2991/jnmp.2004.11.1.4
[34] K. Takemura, The Heun equation and the Calogero-Moser-Sutherland system. IV. The Hermite-Krichever ansatz. Comm. Math. Phys. 258 (2005), no. 2, 367-403 Zbl 1088.81056 MR 2171700 · Zbl 1088.81056 · doi:10.1007/s00220-005-1359-9
[35] K. Takemura, The Heun equation and the Calogero-Moser-Sutherland system. V. Gener-alized Darboux transformations. J. Nonlinear Math. Phys. 13 (2006), no. 4, 584-611 Zbl 1122.34069 MR 2263090 · Zbl 1122.34069 · doi:10.2991/jnmp.2006.13.4.11
[36] A. Treibich and J.-L. Verdier, Revêtements exceptionnels et sommes de 4 nombres trian-gulaires. Duke Math. J. 68 (1992), no. 2, 217-236 Zbl 0806.14013 MR 1191559 · Zbl 0806.14013 · doi:10.1215/S0012-7094-92-06809-8
[37] B. L. van der Waerden, Algebra. Vol 1. Frederick Ungar, New York, 1970 Zbl 0219.34001 MR 0263582 · Zbl 0137.25403
[38] A. P. Veselov, On Darboux-Treibich-Verdier potentials. Lett. Math. Phys. 96 (2011), no. 1-3, 209-216 Zbl 1242.34152 MR 2788911 · Zbl 1242.34152 · doi:10.1007/s11005-010-0420-6
[39] E. T. Whittaker and G. N. Watson, A course of modern analysis. Cambridge University Press, Cambridge, 1927 JFM 53.0180.04 · JFM 53.0180.04
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.