×

Treibich-Verdier potentials and the stationary (m)KdV hierarchy. (English) Zbl 0830.35119

Summary: The elliptic finite-gap solutions of the stationary Korteweg-de Vries (KdV) hierarchy recently introduced by Treibich and Verdier are analyzed in detail on the basis of a theorem due to Picard. Analogous results are derived for the first time in the context of the stationary modified Korteweg-de Vries (mKdV) hierarchy. Our approach extends to general elliptic finite-gap solutions of the (m)KdV hierarchy.

MSC:

35Q53 KdV equations (Korteweg-de Vries equations)
37J35 Completely integrable finite-dimensional Hamiltonian systems, integration methods, integrability tests
37K10 Completely integrable infinite-dimensional Hamiltonian and Lagrangian systems, integration methods, integrability tests, integrable hierarchies (KdV, KP, Toda, etc.)
14H52 Elliptic curves

References:

[1] M. Abramowitz and I. A. Stegun, ”Handbook of Mathematical Functions”, Dover, New York, 1972. · Zbl 0543.33001
[2] H. Airault, H. P. McKean and J. Moser, ”Rational and elliptic solutions of the Korteweg-de Vries equation and a related many-body problem”, Commun. Pure Appl. Math.30, 95–148 (1977). · Zbl 0338.35024 · doi:10.1002/cpa.3160300106
[3] S. I. Al’ber, ”Investigation of equations of Korteweg-de Vries type by the method of recurrence relations”, J. London Math. Soc.19, 467–480 (1979). · Zbl 0413.35064 · doi:10.1112/jlms/s2-19.3.467
[4] F. M. Arscott, ”Periodic Differential Equations” MacMillan, New York, 1964. · Zbl 0121.29903
[5] E. D. Belokolos and V. Z. Enol’skii, ”Verdier elliptic solitons and the Weierstrass theory of reduction”, Funct. Anal. Appl.23, 46–47 (1989). · Zbl 0695.35171 · doi:10.1007/BF01078572
[6] E. D. Belokolos, A. I. Bobenko, V. B. Matveev and V. Z. Enol’skii, ”Algebraic-geometric principles of superposition of finite-zone solutions of integrable non-linear equations”, Russian Math. Surv.41:2, 1–49 (1986). · Zbl 0612.35117 · doi:10.1070/RM1986v041n02ABEH003241
[7] J. L. Burchnall and T. W. Chaundy, ”Commutative ordinary differential operators”, Proc. London Math. Soc. Ser. 2,21, 420–440 (1923). · JFM 49.0311.03 · doi:10.1112/plms/s2-21.1.420
[8] J. L. Burchnall and T. W. Chaundy, ”Commutative ordinary differential operators”, Proc. Roy. Soc. London,A 118, 557–583 (1928). · JFM 54.0439.01 · doi:10.1098/rspa.1928.0069
[9] H. Burkhardt, ”Elliptische Funktionen”, Verlag von Veit, Leipzig, 2nd ed., 1906. · JFM 37.0458.09
[10] M. Buys and A. Finkel, ”The inverse perdiodic problem for Hill’s equation with a finite-gap potential”, J. Diff. Eqs.55, 257–275 (1984). · doi:10.1016/0022-0396(84)90083-4
[11] L. A. Dickey, ”Soliton Equations and Hamiltonian Systems”, World Scientific, Singapore, 1991. · Zbl 0753.35075
[12] B. A. Dubrovin, ”Periodic problems for the Korteweg-de Vries equations in the class of finite band potentials”, Funct. Anal. Appl.9, 215–223 (1975). · Zbl 0358.35022 · doi:10.1007/BF01075598
[13] B. A. Dubrovin, ”Theta functions and non-linear equations”, Russ. Math. Surv.36:2, 11–92 (1981). · Zbl 0549.58038 · doi:10.1070/RM1981v036n02ABEH002596
[14] B. A. Dubrovin and S. P. Novikov, ”Periodic and conditionally periodic analogs of the manysoliton solutions of the Korteweg-de Vries equation”, Sov. Phys. JETP40, 1058–1063 (1975).
[15] F. Ehlers and H. Knörrer, ”An algebro-geometric interpretation of the Bäcklund transformation for the Korteweg-de Vries equation”, Comment. Math. Helvetici57, 1–10 (1982). · Zbl 0516.35071 · doi:10.1007/BF02565842
[16] V. Z. Enol’skii, ”On the solutions in elliptic functions of integrable nonlinear equations”, Phys. Lett.96A, 327–330 (1983).
[17] V. Z. Enol’skii, ”On the two-gap Lamé potentials and elliptic solutions of the Kovalevskaja problem connected with them”, Phys. Lett.100A, 463–466 (1984).
[18] V. Z. Enol’skii, ”On solutions in elliptic functions of integrable nonlinear equations associated with two-zone Lamé potentials”, Sov. Math. Dokl.30, 394–397 (1984).
[19] M. Fiedler, ”Special Matrices and their Applications in Numerical Mathematics”, Martinus Nijhoff Publishers, Dordrecht, 1986. · Zbl 0677.65019
[20] A. Finkel, E. Isaacson and E. Trubowitz, ”An explicit solution of the inverse periodic problem for Hill’s equation”, SIAM J. Math. Anal.18, 46–53 (1987). · Zbl 0622.34021 · doi:10.1137/0518003
[21] I. M. Gel’fand and L. A. Dikii, ”Integrable nonlinear equations and the Liouville theorem”, Funct. Anal. Appl.13, 6–15 (1979). · Zbl 0436.34002 · doi:10.1007/BF01076434
[22] F. Gesztesy, ”On the Modified Korteweg-deVries Equation”, in ”Differential Equations with Applications in Biology, Physics, and Engineering”, J. A. Goldstein, F. Kappel and W. Schappacher (eds.), Marcel Dekker, New York, 1991, p. 139–183. · Zbl 0753.35078
[23] F. Gesztesy, ”Quasi-periodic, finite-gap solutions of the modified Korteweg-deVries equation”, in ”Ideas and Methods in Mathematical Analysis, Stochastics, and Applications”, S. Albeverio, J.E. Fenstad, H. Holden, T. Lindstrøm (eds.) Cambridge University Press, Cambridge, 1992, pp. 428–471. · Zbl 0818.35103
[24] F. Gesztesy, W. Schweiger and B. Simon, ”Commutation methods applied to the mKdV-Equation”, Trans. Amer. Math. Soc.324, 465–525 (1991). · Zbl 0728.35106 · doi:10.2307/2001730
[25] F. Gesztesy and R. Weikard, ”Spectral deformations and soliton equations”, in ”Differential Equations with Applications to Mathematical Physics”, W. F. Ames, E. M. Harrell II, and J. V. Herod (eds.), Academic Press, Boston, 1993, p. 101–139. · Zbl 0795.35099
[26] F. Gesztesy and R. Weikard, ”Lamé potentials and the stationary (m)KdV hierarchy”, Math. Nachr. (to appear) · Zbl 0843.35100
[27] F. Gesztesy and R. Weikard, ”On Picard potentials”, Diff. Integral Eqs. to appear. · Zbl 0846.35119
[28] F. Gesztesy and R. Weikard, ”Picard potentials and Hill’s equation on a torus”, preprint, 1994. · Zbl 0822.35117
[29] G.-H. Halphen, ”Traité des Fonctions Elliptiques”, tome 2, Gauthier-Villars, Paris, 1888. · JFM 19.0803.02
[30] C. Hermite, ”Oeuvres”, tome 3, Gauthier-Villars, Paris, 1912.
[31] E. L. Ince, ”Further investigations into the periodic Lamé functions”, Proc. Roy. Soc. Edinburgh60, 83–99 (1940). · Zbl 0027.21201
[32] E. L. Ince, ”Ordinary Differential Equations”, Dover, New York, 1956. · Zbl 0063.02971
[33] A. R. Its and V. Z. Enol’skii, ”Dynamics of the Calogero-Moser system and the reduction of hyperelliptic integrals to elliptic integrals”, Funct. Anal. Appl.20, 62–63 (1986). · Zbl 0602.14031 · doi:10.1007/BF01077320
[34] A. R. Its and V. B. Matveev, ”Schrödinger operators with finite-gap spectrum and N-soliton solutions of the Korteweg-de Vries equation”, Theoret. Math. Phys.23, 343–355 (1975). · doi:10.1007/BF01038218
[35] N. A. Kostov and V. Z. Enol’skii, ”Spectral characteristics of elliptic solutons”, Math. Notes53, 287–293 (1993). · Zbl 0818.35097 · doi:10.1007/BF01207715
[36] H. P. McKean and P. van Moerbeke, ”The spectrum of Hill’s equation”, Invent. Math.30, 217–274 (1975). · Zbl 0319.34024 · doi:10.1007/BF01425567
[37] R. M. Miura, ”Korteweg-de Vries equation and generalizations. I. A remarkable explicit nonlinear transformation”, J. Math. Phys.9, 1202–1204 (1968). · Zbl 0283.35018 · doi:10.1063/1.1664700
[38] S. P. Novikov, ”The periodic problem for the Korteweg-de Vries equation”, Funct. Anal. Appl.8, 236–246 (1974). · Zbl 0299.35017 · doi:10.1007/BF01075697
[39] S. Novikov, S. V. Manakov, L. P. Pitaevskii and V. E. Zakharov, ”Theory of Solitons”, Consultants Bureau, New York, 1984. · Zbl 0598.35002
[40] G. Segal and G. Wilson, ”Loop groups and equations of KdV type”, Publ. Math. IHES61, 5–65 (1985). · Zbl 0592.35112
[41] A. O. Smirnov, ”Elliptic solutions of the Korteweg-de Vries equations”, Math. Notes45, 476–481 (1989). · Zbl 0706.35122
[42] I. A. Taimanov, ”Elliptic solutions of nonlinear equations”, Theoret. Math. Phys.84, 700–706 (1990). · Zbl 0760.35021 · doi:10.1007/BF01017194
[43] A. Treibich and J.-L. Verdier, ”Solitons elliptiques”, in ”The Grothendieck Festschrift”, Volume III, P. Cartier, L. Illusie, N. M. Katz, G. Laumon, Y. Manin and K. A. Ribet (eds.), Birkhäuser, Basel, 1990, p. 437–480.
[44] A. Treibich and J.-L. Verdier, ”Revêtements tangentiels et sommes de 4 nombres triangulaires”, C. R. Acad. Sci. Paris311, 51–54 (1990). · Zbl 0712.33014
[45] A. Treibich and J.-L. Verdier, ”Revêtements exceptionnels et sommes de 4 nombres triangulaires”, Duke Math. J.68, 217–236 (1992). · Zbl 0806.14013 · doi:10.1215/S0012-7094-92-06809-8
[46] J.-L. Verdier, ”New elliptic solitons”, in ”Algebraic Analysis”, M. Kashiwara and T. Kawai (eds.), Academic Press, Boston, 1988, p. 901–910.
[47] E. T. Whittaker and G. N. Watson, ”A Course of Modern Analysis”, Cambridge Univ. Press, Cambridge, 1986. · JFM 45.0433.02
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.