×

Spectrum of the Lamé operator and application. I: Deformation along \(\operatorname{Re} \tau = \frac{ 1}{ 2} \). (English) Zbl 1468.34116

The authors investigate the spectrum \(\sigma(L_n)\) of the Lamé operator \[L_n:=\displaystyle\frac{d^2}{dx^2}-n(n+1)\wp(x+z_0;\tau),\,\,\,x\in\mathbb{R},\] in \(L^2(\mathbb{R},\mathbb{C})\), where \(n\in\mathbb{N}\), \(\wp(z;\tau)\) is the Weierstrass elliptic function with basic periods \(\omega_1=1\) and \(\omega_2=\tau\), and \(z_0\in\mathbb{C}\) is chosen such that \(L_n\) has no singularities on \(\mathbb{R}\). For \(n=2\), they completely determine all possible intersection points of \(\sigma(L_2)\), and then, for \(\tau=\frac{1}{2}+ib\) with \(b>0\), they show that \(\sigma(L_2)\) has exactly \(9\) different types of graphs for different \(b\)’s, and give the explicit range of \(b\) for each type of graphs. As application, for \(\tau=\frac{1}{2}+ib\) with \(b>0\), the authors prove that there are \(b\in \left(\frac{1}{2\sqrt{3}},\frac{\sqrt{3}}{2}\right)\) such that the mean field equation corresponding to \(L_n\) has no even axisymmetric solutions, but it has \(2\) even solutions which are not axisymmetric.

MSC:

34L05 General spectral theory of ordinary differential operators
34L40 Particular ordinary differential operators (Dirac, one-dimensional Schrödinger, etc.)
33E10 Lamé, Mathieu, and spheroidal wave functions
47A10 Spectrum, resolvent
34L15 Eigenvalues, estimation of eigenvalues, upper and lower bounds of ordinary differential operators
Full Text: DOI

References:

[1] Batchenko, V.; Gesztesy, F., On the spectrum of Schrödinger operators with quasi-periodic algebro-geometric KdV potentials, J. Anal. Math., 95, 333-387 (2005) · Zbl 1088.34071
[2] Birnir, B., Complex Hill’s equation and the complex periodic Korteweg-de Vries equations, Commun. Pure Appl. Math., 39, 1-49 (1986) · Zbl 0592.47004
[3] Borcea, J.; Shapiro, B., Root asymptotics of spectral polynomials for the Lamé operator, Commun. Math. Phys., 282, 323-337 (2008) · Zbl 1208.34142
[4] Chai, C. L.; Lin, C. S.; Wang, C. L., Mean field equations, hyperelliptic curves, and modular forms: I, Camb. J. Math., 3, 127-274 (2015) · Zbl 1327.35116
[5] Chen, C. C.; Lin, C. S.; Wang, G., Concentration phenomena of two-vortex solutions in a Chern-Simons model, Ann. Sc. Norm. Super. Pisa, Cl. Sci. (5), 3, 367-397 (2004) · Zbl 1170.35413
[6] Chen, Z.; Kuo, T. J.; Lin, C. S., Nonexistence of solutions for mean field equation on rectangular torus at critical parameter 16π, Commun. Anal. Geom., 27, 1737-1755 (2019) · Zbl 1465.35221
[7] Chen, Z.; Lin, C. S., On algebraic multiplicity of (anti)periodic eigenvalues of Hill’s equations, Proc. Am. Math. Soc., 146, 3039-3047 (2018) · Zbl 1387.34043
[8] Chen, Z.; Lin, C. S., Sharp nonexistence results for curvature equations with four singular sources on rectangular tori, Am. J. Math., 142, 1269-1300 (2020) · Zbl 1448.35244
[9] Chen, Z.; Lin, C. S., Critical points of the classical Eisenstein series of weight two, J. Differ. Geom., 113, 189-226 (2019) · Zbl 1471.11138
[10] Chen, Z.; Lin, C. S., Spectrum of the Lamé operator and application, II: when an endpoint is a cusp, Commun. Math. Phys., 378, 335-368 (2020) · Zbl 1451.34108
[11] Z. Chen, C.S. Lin, Distribution of critical points of the classical Eisenstein series \(E_4\), preprint.
[12] Darboux, G., Sur une équation lineare, C. R. Acad. Sci. Paris, XCIV, 25, 1645-1648 (1882) · JFM 14.0278.01
[13] Eremenko, A.; Gabrielov, A., Spherical rectangles, Arnold Math. J., 2, 463-486 (2016) · Zbl 1365.30006
[14] Gesztesy, F.; Weikard, R., Picard potentials and Hill’s equation on a torus, Acta Math., 176, 73-107 (1996) · Zbl 0927.37040
[15] Gesztesy, F.; Weikard, R., Lamé potentials and the stationary (m)KdV hierarchy, Math. Nachr., 176, 73-91 (1995) · Zbl 0843.35100
[16] Gesztesy, F.; Weikard, R., Floquet theory revisited, (Differential Equations and Mathematical Physics (1995), Int. Press: Int. Press Boston, MA), 67-84 · Zbl 0946.47031
[17] Haese-Hill, W.; Hallnäs, M.; Veselov, A., On the spectra of real and complex Lamé operators, SIGMA, 13, Article 049 pp. (2017) · Zbl 1385.34061
[18] Ince, E. L., Further investigations into the periodic Lamé equations, Proc. R. Soc. Edinb., 60, 83-99 (1940) · JFM 66.0324.06
[19] Lamé, G., Sur les surfaces isothermes dans les corps homogènes en équilibre de température, J. Math. Pures Appl., 2, 147-188 (1837)
[20] Lin, C. S.; Wang, C. L., Elliptic functions, Green functions and the mean field equations on tori, Ann. Math., 172, 911-954 (2010) · Zbl 1207.35011
[21] Lin, C. S.; Wang, C. L., Mean field equations, hyperelliptic curves, and modular forms: II, J. Éc. Polytech. Math., 4, 557-593 (2017) · Zbl 1376.33022
[22] Lin, C. S.; Wang, C. L., Geometric quantities arising from bubbling analysis of mean field equations, Commun. Anal. Geom., 28, 1289-1313 (2020) · Zbl 1458.35203
[23] Lin, C. S.; Yan, S., Existence of bubbling solutions for Chern-Simons model on a torus, Arch. Ration. Mech. Anal., 207, 353-392 (2013) · Zbl 1260.35155
[24] Naimark, M. A., Linear Differential Operators (1967), Frederick Ungar: Frederick Ungar New York · Zbl 0219.34001
[25] Rofe-Beketov, F., The spectrum of non-selfadjoint differential operators with periodic coefficients, Sov. Math. Dokl., 4, 1563-1566 (1963) · Zbl 0199.14002
[26] Takemura, K., Analytic continuation of eigenvalues of the Lamé operator, J. Differ. Equ., 228, 1-16 (2006) · Zbl 1217.33034
[27] Treibich, A.; Verdier, J. L., Revetements exceptionnels et sommes de 4 nombres triangulaires, Duke Math. J., 68, 217-236 (1992) · Zbl 0806.14013
[28] Weikard, R., On Hill’s equation with a singular complex-valued potential, Proc. Lond. Math. Soc., 76, 603-633 (1998) · Zbl 0905.34004
[29] Whittaker, E. T.; Watson, G. N., A Course of Modern Analysis (1927), Cambridge University Press · JFM 53.0180.04
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.