×

Baire category and the relative growth rate for partial quotients in continued fractions. (English) Zbl 1532.11018

Let \(q_n(x)\) be the denominator of the \(n\)-th convergent of the continued fraction expansion \([a_1(x),a_2(x),\dots,a_n(x),\dots]\) of an irrational number \(x\in(0,1)\). \(q_n(x)\) satisfies the recursive formula \(q_n(x)=a_n(x)q_{n-1}(x)+q_{n-2}(x)\) (\(n\ge 1\)) with \(q_{-1}(x)=0\) and \(q_0(x)=1\). In this paper, the Baire category of the set \[ E(\alpha,\beta):=\left\{x\in(0,1)\backslash\mathbb Q:\liminf_{n\to\infty}\frac{\log a_{n+1}(x)}{\log q_n(x)}=\alpha,\\ \limsup_{n\to\infty}\frac{\log a_{n+1}(x)}{\log q_n(x)}=\beta\right\} \] for all \(0\le\alpha\le\beta\le\infty\) is studied. A set is said to be of first category if it can be represented as a countable union of nowhere dense sets. A set is residual if its complement is of first category. It is proved that the set \(E(\alpha,\beta)\) is residual if and only if \(\alpha=0\) and \(\beta=\infty\).

MSC:

11A55 Continued fractions
11J70 Continued fractions and generalizations
26A21 Classification of real functions; Baire classification of sets and functions
Full Text: DOI

References:

[1] Baek, I.; Olsen, L., Baire category and extremely non-normal points of invariant sets of IFS’s, Discrete Contin. Dyn. Syst., 27, 935-943 (2010) · Zbl 1234.11097 · doi:10.3934/dcds.2010.27.935
[2] Besicovitch, A., Sets of fractional dimension (IV): on rational approximation to real numbers, J. Lond. Math. Soc., 9, 126-131 (1934) · Zbl 0009.05301 · doi:10.1112/jlms/s1-9.2.126
[3] Bugeaud, Y., Diophantine approximation and Cantor sets, Math. Ann., 341, 677-684 (2008) · Zbl 1163.11056 · doi:10.1007/s00208-008-0209-4
[4] Falconer, K., Fractal Geometry: Mathematical Foundations and Applications (1990), Chichester: Wiley, Chichester · Zbl 0689.28003
[5] Jarník, V., Über die simultanen diophantischen Approximationen, Math. Z., 33, 505-543 (1931) · JFM 57.1370.01 · doi:10.1007/BF01174368
[6] Khintchine, A.Ya.: Continued Fractions. University of Chicago Press, Chicago (1964) · Zbl 0071.03601
[7] Olsen, L., Extremely non-normal continued fractions, Acta Arith., 108, 191-202 (2003) · Zbl 1051.11043 · doi:10.4064/aa108-2-8
[8] Olsen, L.; West, M., Average frequencies of digits in infinite IFS’s and applications to continued fractions and Lüroth expansions, Monatsh. Math., 193, 441-478 (2020) · Zbl 1448.28011 · doi:10.1007/s00605-020-01457-w
[9] Oxtoby, J., Measure and Category (1980), New York-Berlin: Springer, New York-Berlin · Zbl 0435.28011 · doi:10.1007/978-1-4684-9339-9
[10] Shang, L.; Wu, M., On the growth behavior of partial quotients in continued fractions, Arch. Math. (Basel), 120, 297-305 (2023) · Zbl 1519.11044 · doi:10.1007/s00013-022-01821-2
[11] Sun, Y.; Wu, J., A dimensional result in continued fractions, Int. J. Number Theory, 10, 849-857 (2014) · Zbl 1297.11090 · doi:10.1142/S179304211450002X
[12] Tan, B.; Zhou, Q., The relative growth rate for partial quotients in continued fractions, J. Math. Anal. Appl., 478, 229-235 (2019) · Zbl 1417.37058 · doi:10.1016/j.jmaa.2019.05.029
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.