×

On the growth behavior of partial quotients in continued fractions. (English) Zbl 1519.11044

Let \(x = [0;a_1(x),a_2(x),\ldots]\) denote the classical continued fraction expansion of the irrational number \(x \in [0,1)\). In this article, the authors consider the size of the sets \[ E(\alpha,\beta) := \left\{x \in [0,1]\setminus \mathbb{Q}: \liminf_{n \to \infty} \frac{\log a_n(x)}{\log n} = \alpha, \limsup_{n \to \infty}\frac{\log a_n(x)}{\log n} = \beta \right\}, \] where \(0 \leq \alpha \leq \beta \leq \infty\), both from the point of view of Baire classification and Hausdorff dimension. Clearly, analyzing the almost sure behaviour with respect to Lebesgue measure yields that \(E(0,1)\) is of full measure and all other sets have measure zero.
In Theorem 1.1, which treats the Baire classification, it is shown that the set \(E(\alpha, \beta)\) is residual if and only if \((\alpha,\beta) = (0,\infty)\).
In Theorem 1.2, which treats the Hausdorff dimension, the authors show that the Hausdorff dimension of \(E(\alpha,\beta)\) is independent of \(\beta\). Furthermore, for all \(\alpha,\beta \in [0,\infty]\) with \(\alpha \leq \beta\), \[ \dim_{H} E(\alpha,\beta) = \begin{cases} 1, &\text{ if } \alpha = 0,\\ \frac{1}{2}, &\text{ if } \alpha > 0. \end{cases} \] Theorem 1.2 can be compared to the recent result of [L. Fang et al., Ramanujan J. 56, No. 3, 891–909 (2021; Zbl 1481.11078)] who proved that for any \(\alpha > 0\), \(\dim_H\left(\bigcup\limits_{\beta \in [0,\infty]} E(\alpha,\beta)\right) = \frac{1}{2}\) and for any \(\beta > 0\), \(\dim_H\left(\bigcup\limits_{\alpha \in [0,\infty]} E(\alpha,\beta)\right) = 1\).
From a naive point of view, the combination of Theorems 1.1 and 1.2 shows an interesting counterintuitive behaviour: \(E(0,\infty)\) is considered “large” with respect to the Baire classification (as complement of a first category set), but has Hausdorff dimension \(0\). On the other hand, \(E(\alpha,\beta)\) for \(\alpha > 0\) has positive Hausdorff dimension, but is of first category and thus is a “small set” with respect to the Baire classification.
As another result, the authors consider the set of all \(x\) such that the sequence of its partial quotients is non-decreasing, i.e., let \[ \Lambda := \left\{x \in [0,1]\setminus \mathbb{Q}: a_n(x) \leq a_{n+1}(x) \;\;\text{ for all } n \geq 1 \right\}. \] It was shown in [L. Fang et al., Acta Math. Sci., Ser. B, Engl. Ed. 41, No. 6, 1896–1910 (2021; Zbl 1513.11143)] that \[ \dim_H\left(\Lambda \cap \left(\bigcup\limits_{\beta \in [0,\infty]} E(\alpha,\beta)\right)\right) = \begin{cases} 0 &\text{ if } 0 \leq \alpha \leq 1, \\ \frac{\alpha-1}{2\alpha} &\text{ if } \alpha > 1. \end{cases} \] In Theorem 1.3, it is established that the same Hausdorff estimates hold for any fixed \(\beta \geq \alpha\), i.e., for any \(0 \leq \alpha \leq \beta \leq \infty\), we have \[ \dim_H\left(\lambda \cap E(\alpha,\beta)\right) = \begin{cases} 0 &\text{ if } 0 \leq \alpha \leq 1, \\ \frac{\alpha-1}{2\alpha} &\text{ if } \alpha > 1. \end{cases} \] The proofs of all three theorems are elementary and very short (thus the paper is only 7 pages long), but are nevertheless well readable.

MSC:

11K50 Metric theory of continued fractions
26A21 Classification of real functions; Baire classification of sets and functions
28A78 Hausdorff and packing measures
28A80 Fractals
11J83 Metric theory
Full Text: DOI

References:

[1] Bernstein, F., Über eine Anwendung der Mengenlehre auf ein der Theorie der säkularen Störungen herrührendes Problem, Math. Ann., 71, 417-439 (1911) · JFM 42.1007.01 · doi:10.1007/BF01456856
[2] Borel, É., Sur un probl \(\grave{e}\) me de probabilit \(\acute{e}\) s relatif aux fractions continues, Math. Ann., 72, 578-584 (1912) · JFM 43.0113.04 · doi:10.1007/BF01456677
[3] Falconer, K., Fractal Geometry: Mathematical Foundations and Applications (1990), Chichester: John Wiley & Sons, Chichester · Zbl 0689.28003
[4] Fan, A.; Liao, L.; Wang, B.; Wu, J., On Khintchine exponents and Lyapunov exponents of continued fractions, Ergod. Theor. Dyn. Syst., 29, 73-109 (2009) · Zbl 1158.37019 · doi:10.1017/S0143385708000138
[5] Fang, L.; Ma, J.; Song, K., Some exceptional sets of Borel-Bernstein theorem in continued fractions, Ramanujan J., 56, 891-909 (2021) · Zbl 1481.11078 · doi:10.1007/s11139-020-00320-8
[6] Fang, L.; Ma, J.; Song, K.; Wu, M., Multifractal analysis of the convergence exponent in continued fractions, Acta Math. Sci. Ser. B, 41, 1896-1910 (2021) · Zbl 1513.11143 · doi:10.1007/s10473-021-0607-1
[7] Fang, L.; Shang, L.; Wu, M., On upper and lower fast Khintchine spectra of continued fractions, Forum Math., 34, 821-830 (2022) · Zbl 1493.11112 · doi:10.1515/forum-2021-0275
[8] Good, I., The fractional dimensional theory of continued fractions, Math. Proc. Camb. Philos. Soc., 37, 199-228 (1941) · JFM 67.0988.03 · doi:10.1017/S030500410002171X
[9] Iosifescu, M.; Kraaikamp, C., Metrical Theory of Continued Fractions (2002), Dordrecht: Kluwer Academic Publishers, Dordrecht · Zbl 1122.11047 · doi:10.1007/978-94-015-9940-5
[10] Jarník, V., Zur metrischen Theorie der diophantischen Approximationen, Proc. Mat. Fyz., 36, 91-106 (1928) · JFM 55.0718.01
[11] Jordan, T.; Rams, M., Increasing digit subsystems of infinite iterated function systems, Proc. Am. Math. Soc., 140, 1267-1279 (2012) · Zbl 1242.28011 · doi:10.1090/S0002-9939-2011-10969-9
[12] Khintchine, A., Continued Fractions (1964), Chicago: University of Chicago Press, Chicago · Zbl 0117.28601
[13] Liao, L.; Rams, M., Big Birkhoff sums in \(d\)-decaying Gauss like iterated function systems, Studia Math., 264, 1-25 (2022) · Zbl 1490.11077 · doi:10.4064/sm201031-23-8
[14] Oxtoby, J., Measure and Category (1980), New York: Springer, New York · Zbl 0435.28011 · doi:10.1007/978-1-4684-9339-9
[15] Ramharter, G., Eine Bemerkungüber gewisse Nullmengen von Kettenbrüchen, Ann. Univ. Sci. Budapest. Eötvös Sect. Math., 28, 11-15 (1985) · Zbl 0605.10004
[16] Shang, L.; Wu, M., On the exponent of convergence of the digit sequence of Engel series, J. Math. Anal. Appl., 504, 15 (2021) · Zbl 1469.11253 · doi:10.1016/j.jmaa.2021.125368
[17] Wang, B.; Wu, J., Hausdorff dimension of certain sets arising in continued fraction expansions, Adv. Math., 218, 1319-1339 (2008) · Zbl 1233.11084 · doi:10.1016/j.aim.2008.03.006
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.