×

Smooth homotopy of diffeological spaces: theory and applications to infinite-dimensional \(C^\infty \)-manifolds. (English) Zbl 1531.58007

Magnot, Jean-Pierre (ed.), Recent advances in diffeologies and their applications. AMS-EMS-SMF special session, Université de Grenoble-Alpes, Grenoble, France, July 18–20, 2022. Providence, RI: American Mathematical Society (AMS). Contemp. Math. 794, 239-258 (2024).
Summary: We present the basic notions and results of our smooth homotopy theory of diffeological spaces and its applications to infinite-dimensional \(C^\infty\)-manifolds, focusing on the fundamental ideas. In particular, smoothing problems for maps, sections, principal bundles, and gauge transformations are discussed.
For the entire collection see [Zbl 1531.53005].

MSC:

58A40 Differential spaces
58B10 Differentiability questions for infinite-dimensional manifolds
18F15 Abstract manifolds and fiber bundles (category-theoretic aspects)
18N40 Homotopical algebra, Quillen model categories, derivators
Full Text: DOI

References:

[1] Bergner, Julia E., A model category structure on the category of simplicial categories, Trans. Amer. Math. Soc., 2043-2058 (2007) · Zbl 1114.18006 · doi:10.1090/S0002-9947-06-03987-0
[2] Christensen, J. Daniel, The \(D\)-topology for diffeological spaces, Pacific J. Math., 87-110 (2014) · Zbl 1311.57031 · doi:10.2140/pjm.2014.272.87
[3] Christensen, J. Daniel, The homotopy theory of diffeological spaces, New York J. Math., 1269-1303 (2014) · Zbl 1325.57013
[4] Christensen, J. Daniel, Smooth classifying spaces, Israel J. Math., 911-954 (2021) · Zbl 1465.57100 · doi:10.1007/s11856-021-2120-6
[5] Dold, Albrecht, Partitions of unity in the theory of fibrations, Ann. of Math. (2), 223-255 (1963) · Zbl 0203.25402 · doi:10.2307/1970341
[6] Dwyer, W. G., Handbook of algebraic topology. Homotopy theories and model categories, 73-126 (1995), North-Holland, Amsterdam · Zbl 0869.55018 · doi:10.1016/B978-044481779-2/50003-1
[7] Fr\"{o}licher, Alfred, Linear spaces and differentiation theory, Pure and Applied Mathematics (New York), xvi+246 pp. (1988), John Wiley & Sons, Ltd., Chichester · Zbl 0657.46034
[8] Goerss, Paul G., Simplicial homotopy theory, Progress in Mathematics, xvi+510 pp. (1999), Birkh\"{a}user Verlag, Basel · Zbl 0949.55001 · doi:10.1007/978-3-0348-8707-6
[9] T. Haraguchi and K. Shimakawa, A model structure on the category of diffeological spaces. Preprint, 1311.5668, 2013.
[10] Hector, G., Analysis and geometry in foliated manifolds. G\'{e}om\'{e}trie et topologie des espaces diff\'{e}ologiques, 55-80 (1994), World Sci. Publ., River Edge, NJ · Zbl 0993.58500
[11] Heisey, Richard E., Manifolds modelled on \(R^{\infty }\) or bounded weak-* topologies, Trans. Amer. Math. Soc., 295-312 (1975) · Zbl 0301.58010 · doi:10.2307/1997158
[12] Hirschhorn, Philip S., Model categories and their localizations, Mathematical Surveys and Monographs, xvi+457 pp. (2003), American Mathematical Society, Providence, RI · Zbl 1017.55001 · doi:10.1090/surv/099
[13] Iglesias-Zemmour, Patrick, Diffeology, Mathematical Surveys and Monographs, xxiv+439 pp. (2013), American Mathematical Society, Providence, RI · Zbl 1269.53003 · doi:10.1090/surv/185
[14] Kihara, Hiroshi, Model category of diffeological spaces, J. Homotopy Relat. Struct., 51-90 (2019) · Zbl 1459.58001 · doi:10.1007/s40062-018-0209-3
[15] H. Kihara, Smooth Homotopy of Infinite-Dimensional \(C^\)-Manifolds, vol. 289, Memoirs of the AMS, Amer. Math. Soc., Providence, RI, 2023, pp. 1-129. · Zbl 1542.58001
[16] H. Kihara, Smooth singular complexes and diffeological principal bundles, to appear in Algebr. Geom. Topol., Preprint, 2202.00131, 2022.
[17] H. Kihara, De Rham calculus on diffeological spaces, in preparation.
[18] Kriegl, Andreas, The convenient setting of global analysis, Mathematical Surveys and Monographs, x+618 pp. (1997), American Mathematical Society, Providence, RI · Zbl 0889.58001 · doi:10.1090/surv/053
[19] A. Kriegl and P. W. Michor, Smooth and continuous homotopies into convenient manifolds agree, unpublished preprint, 2002.
[20] May, J. Peter, Simplicial objects in algebraic topology, Chicago Lectures in Mathematics, viii+161 pp. (1992), University of Chicago Press, Chicago, IL · Zbl 0769.55001
[21] Milnor, John, On spaces having the homotopy type of a \(\text{CW} \)-complex, Trans. Amer. Math. Soc., 272-280 (1959) · Zbl 0084.39002 · doi:10.2307/1993204
[22] M\"{u}ller, Christoph, Equivalences of smooth and continuous principal bundles with infinite-dimensional structure group, Adv. Geom., 605-626 (2009) · Zbl 1184.22011 · doi:10.1515/ADVGEOM.2009.032
[23] Y.-G. Oh and H. L. Tanaka, Continuous and coherent actions on wrapped Fukaya categories, Preprint, 1911.00349, 2019.
[24] Oh, Yong-Geun, Smooth constructions of homotopy-coherent actions, Algebr. Geom. Topol., 1177-1216 (2022) · Zbl 1497.58004 · doi:10.2140/agt.2022.22.1177
[25] Palais, Richard S., Homotopy theory of infinite dimensional manifolds, Topology, 1-16 (1966) · Zbl 0138.18302 · doi:10.1016/0040-9383(66)90002-4
[26] D. Pavlov, Projective model structures on diffeological spaces and smooth sets and the smooth Oka principle, Preprint, 2210.12845, 2022.
[27] Souriau, J.-M., Differential geometrical methods in mathematical physics. Groupes diff\'{e}rentiels, Lecture Notes in Math., 91-128 (1979), Springer, Berlin · Zbl 0501.58010
[28] J.-M. Souriau, Groupes diff\'erentiels et physique math\'ematique. Group Theoretical Methods in Physics. Springer, Berlin, Heidelberg, 1984. 511-513. · Zbl 07905621
[29] Steenrod, Norman, The topology of fibre bundles, Princeton Landmarks in Mathematics, viii+229 pp. (1999), Princeton University Press, Princeton, NJ · Zbl 0942.55002
[30] tom Dieck, Tammo, Partitions of unity in homotopy theory, Compositio Math., 159-167 (1971) · Zbl 0212.55804
[31] Wockel, Christoph, Lie group structures on symmetry groups of principal bundles, J. Funct. Anal., 254-288 (2007) · Zbl 1130.22010 · doi:10.1016/j.jfa.2007.05.016
[32] Wockel, Christoph, A generalization of Steenrod’s approximation theorem, Arch. Math. (Brno), 95-104 (2009) · Zbl 1212.58005
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.