×

Smooth homotopy of infinite-dimensional \(C^{\infty}\)-manifolds. (English) Zbl 1542.58001

Memoirs of the American Mathematical Society 1436. Providence, RI: American Mathematical Society (AMS) (ISBN 978-1-4704-6542-1/pbk; 978-1-4704-7591-8/ebook). vii, 129 p. (2023).
This paper develops a smooth homotopy theory for the category of diffeological spaces and applies it to the study of global analysis for infinite-dimensional \(C^\infty\)-manifolds.
A parametrization of a set \(X\) is a (set-theoretic) map from an open subset of \({\mathbb R}^n\) for some \(n\) to \(X\). A diffeological space is a set \(X\) with a specified set \({D}\) of parametrizations of \(X\) that satisfy the covering property, the locality and the smooth compatibility. A smooth map \(f : (X, {D}_X) \to (Y, {D}_Y)\) between diffeological spaces is a map \(f : X\to Y\) with \(f\circ p \in {D}_Y\) for any \(p \in {D}_X\). The category \(\mathcal{D}\) of diffeological spaces and smooth maps is cocomplete, complete and cartesian closed. These are characteristic properties of \(\mathcal{D}\).
In [H. Kihara, J. Homotopy Relat. Struct. 14, No. 1, 51–90 (2019; Zbl 1459.58001)], the author establishes a compactly generated model structure on the category \(\mathcal{D}\), which is recalled in Definition 2.13. To this end, maps \(\varphi_i : \Delta^{p-1} \times [0, 1) \to \Delta^p\) (\(i = 0,\dots, p\)) with \(\varphi_i(x, t)= (1-t)(i) + td^i(x)\) are introduced, where \(d^i\) denotes the \(i\)th coface map. Additionaly, the standard \(p\)-simplices \(\Delta^p\) (\(p\geq 0\)) are defined inductively by using \(\varphi_i\) and the final structure for the maps, where for \(p \leq 1\), \(\Delta^p\) is the canonical simplex \(\Delta_\text{sub}\) endowed with the sub-diffeology of the affine space \(\mathbb{A}^p\).
Let \(\mathcal{S}\) denote the category of simplicial spaces. The standard simplices mentioned above define the singular functor \(S^\mathcal{D} : \mathcal{D} \to \mathcal{S}\) and the realization functor \(| \ |_{\mathcal{D}} : \mathcal{S} \to \mathcal{D}\) by the usual way. Recall that a topological space \(X\) is arc-generated if its topology is final for the continuous curves from \(\mathbb{R}\) to \(X\). Let \(\mathcal{C}^0\) be the full sub-category of the category of topological spaces consisting of arc-generated spaces. By definition, the underlying topology functor \(\widetilde{\cdot} : \mathcal{D} \to \mathcal{C}^0\) assigns to a diffeological space \((X, \mathcal{D}_X)\) the underlying set \(X\) with the final topology for \(\mathcal{D}_X\). Moreover, for an arc-generated space \(X\), we define a diffeology \(\mathcal{D}_{RX}\) as the set of continuous parametrizations of \(X\). Then, the assignment \(R\) gives rise to a functor \(R : \mathcal{C}^0 \to \mathcal{D}\). These functors enable us to obtain Quillen equivalences of categories.
{Theorem 1.5} (1) \(| \ |_{\mathcal{D}} : \mathcal{S} \rightleftarrows \mathcal{D} : S^{\mathcal{D}}\) is a pair of Quillen equivalences.
(2) \(\widetilde{\cdot} : \mathcal{D} \rightleftarrows \mathcal{C}^0 : R\) is a pair of Quillen equivalences.
We observe that the underlying topology functor \(\widetilde{\cdot}\) preserves finite products ([loc. cit., Proposition 2.13]). Thus, the functor induces the natural inclusion between simplicial complexes \[ S^{\mathcal{D}}\mathcal{D}(A, X) \to S\mathcal{C}^0(\widetilde{A}, \widetilde{X}), \] where \(S\) denotes the singular simplex functor. To describe the first main theorem of this paper, we need two subclasses of \(\mathcal{D}\). One is the subclass \(\mathcal{W}_{\mathcal{D}}\) defined by \[ \mathcal{W}_{\mathcal{D}}:= \{A \in \mathcal{D} \mid \text{\(A\) has the \(\mathcal{D}\)-homotopy type of a cofibrant diffeological space}\}. \] The other is the subclass \(\mathcal{V}_{\mathcal{D}}\) defined by \[ \mathcal{V}_{\mathcal{D}}: = \{ A \in \mathcal{D} \mid \text{\(\mathrm{id} : A \to R\widetilde{A}\) is a weak equivalent in \(\mathcal{D}\)} \}. \] Corollary 1.6 asserts that there is an inclusion from \(\mathcal{W}_{\mathcal{D}}\) to \(\mathcal{V}_{\mathcal{D}}\).
The author proves the smoothing theorem for continuous maps (Theorem 1.7), continuous sections (Theorem 1.8) and principal bundles (Theorem 1.9). In particular, Theorem 1.7 asserts that if \(A\) is in \(\mathcal{W}_{\mathcal{D}}\) and \(X\) is in \(\mathcal{V}_{\mathcal{D}}\), then the natural inclusion \(S^{\mathcal{D}}\mathcal{D}(A, X) \to S\mathcal{C}^0(\widetilde{A}, \widetilde{X})\) is a weak equivalence in \(\mathcal{S}\).
As the title shows, the paper applies these diffeological results to \(C^\infty\)-manifolds in the sense of A. Kriegl and P. W. Michor [The convenient setting of global analysis. Providence, RI: American Mathematical Society (1997; Zbl 0889.58001), Section 27] with which infinite-dimensional calculus is developed. Lemma 2.5 allows us to obtain a fully faithful embedding of the category of \(C^\infty\)-manifolds into \(\mathcal{D}\). Thus, \(C^\infty\)-manifolds become important objects in \(\mathcal{D}\).
Theorem 1.10 provides a sufficient condition for a diffeological space to be in the subclass \(\mathcal{W}_D\). It is worthwhile to mention that a diffeological version of the nerve lemma (Proposition 9.5) is used to prove the theorem. Moreover, Theorem 1.11 asserts that every locally contractible diffeological space is in \(\mathcal{V}_{\mathcal{D}}\). These results yield that every hereditarily \(C^\infty\)-paracompact, semiclassical \(C^\infty\)-manifold is in \(\mathcal{W}_{\mathcal{D}}\) (Theorem 11.1) and that every \(C^\infty\)-manifold is in \(\mathcal{V}_{\mathcal{D}}\) (Theorem 11.2). In particular, every submanifold of \(M\), which is modeled on Hilbert space, nuclear Fréchet space, or nuclear Silva space, is in \(\mathcal{W}_{\mathcal{D}}\). Thus, Theorems 1.7, 1.8 and 1.9 are applicable to such manifolds.
Appendix A deals with pathological diffeological spaces. We define other subclass \(\widetilde{}\mathcal{W}_{\mathcal{C}^0}\) of \(\mathcal{D}\) by \[ \widetilde{}\mathcal{W}_{\mathcal{C}^0}:=\{A \in \mathcal{D} \mid \text{\(\widetilde{A}\) has the homotopy type of cofibrant arc-generated space}\}. \] Then, the irrational torus is in \(\widetilde{}\mathcal{W}_{\mathcal{C}^0}\backslash \mathcal{V}_{\mathcal{D}}\). Moreover, the author gives examples which are in \(\mathcal{D} \backslash (\mathcal{V}_{\mathcal{D}}\cup \widetilde{}\mathcal{W}_{\mathcal{C}^0})\), \(\widetilde{}\mathcal{W}_{\mathcal{C}^0}\backslash \mathcal{V}_{\mathcal{D}}\), \(\mathcal{V}_{\mathcal{D}}\backslash \widetilde{}\mathcal{W}_{\mathcal{C}^0}\) and \((\mathcal{V}_{\mathcal{D}}\cap \widetilde{}\mathcal{W}_{\mathcal{C}^0})\backslash \mathcal{W}_D\).

MSC:

58B05 Homotopy and topological questions for infinite-dimensional manifolds
58A40 Differential spaces
18N40 Homotopical algebra, Quillen model categories, derivators

References:

[1] M. Aguilar and C. Prieto, Fiber bundles, unpublished note, available at: https://computo.matem.unam.mx/cprieto/phocadownloadpap/Libros/fiber%20bundles.pdf.
[2] Baez, John C., Convenient categories of smooth spaces, Trans. Amer. Math. Soc., 5789-5825 (2011) · Zbl 1237.58006 · doi:10.1090/S0002-9947-2011-05107-X
[3] Bergner, Julia E., A model category structure on the category of simplicial categories, Trans. Amer. Math. Soc., 2043-2058 (2007) · Zbl 1114.18006 · doi:10.1090/S0002-9947-06-03987-0
[4] Borceux, Francis, Handbook of categorical algebra. 2, Encyclopedia of Mathematics and its Applications, xviii+443 pp. (1994), Cambridge University Press, Cambridge · Zbl 0843.18001
[5] Bredon, Glen E., Topology and geometry, Graduate Texts in Mathematics, xiv+557 pp. (1993), Springer-Verlag, New York · Zbl 0791.55001 · doi:10.1007/978-1-4757-6848-0
[6] Br\"{o}cker, Theodor, Introduction to differential topology, vii+160 pp. (1982), Cambridge University Press, Cambridge-New York · Zbl 0486.57001
[7] Christensen, J. Daniel, The \(D\)-topology for diffeological spaces, Pacific J. Math., 87-110 (2014) · Zbl 1311.57031 · doi:10.2140/pjm.2014.272.87
[8] Christensen, J. Daniel, The homotopy theory of diffeological spaces, New York J. Math., 1269-1303 (2014) · Zbl 1325.57013
[9] Christensen, J. Daniel, Tangent spaces and tangent bundles for diffeological spaces, Cah. Topol. G\'{e}om. Diff\'{e}r. Cat\'{e}g., 3-50 (2016) · Zbl 1355.57023
[10] Christensen, J. Daniel, Tangent spaces of bundles and of filtered diffeological spaces, Proc. Amer. Math. Soc., 2255-2270 (2017) · Zbl 1359.57014 · doi:10.1090/proc/13334
[11] Christensen, J. Daniel, Smooth classifying spaces, Israel J. Math., 911-954 (2021) · Zbl 1465.57100 · doi:10.1007/s11856-021-2120-6
[12] Christensen, J. Daniel, Diffeological vector spaces, Pacific J. Math., 73-92 (2019) · Zbl 1450.46058 · doi:10.2140/pjm.2019.303.73
[13] Ciesielski, Krzysztof, Set theory for the working mathematician, London Mathematical Society Student Texts, xii+236 pp. (1997), Cambridge University Press, Cambridge · Zbl 0938.03067 · doi:10.1017/CBO9781139173131
[14] Dold, Albrecht, Partitions of unity in the theory of fibrations, Ann. of Math. (2), 223-255 (1963) · Zbl 0203.25402 · doi:10.2307/1970341
[15] Dold, Albrecht, Lectures on algebraic topology, Classics in Mathematics, xii+377 pp. (1995), Springer-Verlag, Berlin · Zbl 0872.55001 · doi:10.1007/978-3-642-67821-9
[16] Dubuc, Eduardo J., Applications of sheaves. Concrete quasitopoi, Lecture Notes in Math., 239-254 (1977), Springer, Berlin · Zbl 0423.18006
[17] Dwyer, W. G., Homotopy theory and simplicial groupoids, Nederl. Akad. Wetensch. Indag. Math., 379-385 (1984) · Zbl 0559.55023
[18] Dwyer, W. G., Handbook of algebraic topology. Homotopy theories and model categories, 73-126 (1995), North-Holland, Amsterdam · Zbl 0869.55018 · doi:10.1016/B978-044481779-2/50003-1
[19] Eells, James, Jr., A setting for global analysis, Bull. Amer. Math. Soc., 751-807 (1966) · doi:10.1090/S0002-9904-1966-11558-6
[20] Eda, Katsuya, The singular homology of the Hawaiian earring, J. London Math. Soc. (2), 305-310 (2000) · Zbl 0958.55004 · doi:10.1112/S0024610700001071
[21] Eda, Katsuya, Homotopy and homology groups of the \(n\)-dimensional Hawaiian earring, Fund. Math., 17-28 (2000) · Zbl 0959.55010 · doi:10.4064/fm-165-1-17-28
[22] Eilenberg, Samuel, Acyclic models, Amer. J. Math., 189-199 (1953) · Zbl 0050.17205 · doi:10.2307/2372628
[23] Engelking, Ryszard, General topology, Sigma Series in Pure Mathematics, viii+529 pp. (1989), Heldermann Verlag, Berlin · Zbl 0684.54001
[24] Fr\"{o}licher, Alfred, Linear spaces and differentiation theory, Pure and Applied Mathematics (New York), xvi+246 pp. (1988), John Wiley & Sons, Ltd., Chichester · Zbl 0657.46034
[25] Gabriel, P., Calculus of fractions and homotopy theory, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 35, x+168 pp. (1967), Springer-Verlag New York, Inc., New York · Zbl 0186.56802
[26] Gil-Medrano, Olga, Geodesics on spaces of almost Hermitian structures, Israel J. Math., 319-332 (1994) · Zbl 0821.53031 · doi:10.1007/BF02937517
[27] Gl\"{o}ckner, Helge, Fundamentals of direct limit Lie theory, Compos. Math., 1551-1577 (2005) · Zbl 1082.22012 · doi:10.1112/S0010437X05001491
[28] Gl\"{o}ckner, Helge, Direct limits of infinite-dimensional Lie groups compared to direct limits in related categories, J. Funct. Anal., 19-61 (2007) · Zbl 1119.22012 · doi:10.1016/j.jfa.2006.12.018
[29] Gl\"{o}ckner, Helge, Developments and trends in infinite-dimensional Lie theory. Direct limits of infinite-dimensional Lie groups, Progr. Math., 243-280 (2011), Birkh\"{a}user Boston, Boston, MA · Zbl 1217.22018 · doi:10.1007/978-0-8176-4741-4\_8
[30] Goerss, Paul G., Simplicial homotopy theory, Progress in Mathematics, xvi+510 pp. (1999), Birkh\"{a}user Verlag, Basel · Zbl 0949.55001 · doi:10.1007/978-3-0348-8707-6
[31] Greenberg, Marvin J., Lectures on algebraic topology, x+235 pp. (1967), W. A. Benjamin, Inc., New York-Amsterdam · Zbl 0169.54403
[32] Hector, G., Analysis and geometry in foliated manifolds. G\'{e}om\'{e}trie et topologie des espaces diff\'{e}ologiques, 55-80 (1994), World Sci. Publ., River Edge, NJ · Zbl 0993.58500
[33] Heisey, Richard E., Manifolds modelled on \(R^{\infty }\) or bounded weak-* topologies, Trans. Amer. Math. Soc., 295-312 (1975) · Zbl 0301.58010 · doi:10.2307/1997158
[34] Hirschhorn, Philip S., Model categories and their localizations, Mathematical Surveys and Monographs, xvi+457 pp. (2003), American Mathematical Society, Providence, RI · Zbl 1017.55001 · doi:10.1090/surv/099
[35] Hovey, Mark, Model categories, Mathematical Surveys and Monographs, xii+209 pp. (1999), American Mathematical Society, Providence, RI · Zbl 0909.55001
[36] Husemoller, Dale, Fibre bundles, Graduate Texts in Mathematics, xx+353 pp. (1994), Springer-Verlag, New York · Zbl 0794.55001 · doi:10.1007/978-1-4757-2261-1
[37] Iglesias-Zemmour, Patrick, The moment maps in diffeology, Mem. Amer. Math. Soc., vi+72 pp. (2010) · Zbl 1203.53084 · doi:10.1090/S0065-9266-10-00582-X
[38] Iglesias-Zemmour, Patrick, Diffeology, Mathematical Surveys and Monographs, xxiv+439 pp. (2013), American Mathematical Society, Providence, RI · Zbl 1269.53003 · doi:10.1090/surv/185
[39] Iglesias, Patrick, Orbifolds as diffeologies, Trans. Amer. Math. Soc., 2811-2831 (2010) · Zbl 1197.57025 · doi:10.1090/S0002-9947-10-05006-3
[40] H. Jarchow, Locally convex spaces, Springer Science & Business Media, 2012. · Zbl 0466.46001
[41] P. T. Johnstone, Topos theory, Courier Corporation, 2014. · Zbl 0368.18001
[42] Kihara, Hiroshi, Minimal fibrations and the organizing theorem of simplicial homotopy theory, Ric. Mat., 79-91 (2014) · Zbl 1327.18026 · doi:10.1007/s11587-013-0165-5
[43] Kihara, Hiroshi, Model category of diffeological spaces, J. Homotopy Relat. Struct., 51-90 (2019) · Zbl 1459.58001 · doi:10.1007/s40062-018-0209-3
[44] H. Kihara, Convenient categories for global analysis, in preparation.
[45] Kriegl, A., The convenient setting for real analytic mappings, Acta Math., 105-159 (1990) · Zbl 0738.46024 · doi:10.1007/BF02391903
[46] Kriegl, Andreas, The convenient setting of global analysis, Mathematical Surveys and Monographs, x+618 pp. (1997), American Mathematical Society, Providence, RI · Zbl 0889.58001 · doi:10.1090/surv/053
[47] A. Kriegl and P. W. Michor, Smooth and continuous homotopies into convenient manifolds agree, unpublished preprint, 2002.
[48] Losik, M. V., Fr\'{e}chet manifolds as diffeological spaces, Izv. Vyssh. Uchebn. Zaved. Mat., 36-42 (1992)
[49] Mac Lane, Saunders, Categories for the working mathematician, Graduate Texts in Mathematics, xii+314 pp. (1998), Springer-Verlag, New York · Zbl 0906.18001
[50] Magnot, Jean-Pierre, The diffeology of Milnor’s classifying space, Topology Appl., 189-213 (2017) · Zbl 1457.53014 · doi:10.1016/j.topol.2017.10.011
[51] May, J. Peter, Simplicial objects in algebraic topology, Chicago Lectures in Mathematics, viii+161 pp. (1992), University of Chicago Press, Chicago, IL · Zbl 0769.55001
[52] May, J. P., A concise course in algebraic topology, Chicago Lectures in Mathematics, x+243 pp. (1999), University of Chicago Press, Chicago, IL · Zbl 0923.55001
[53] May, J. P., More concise algebraic topology, Chicago Lectures in Mathematics, xxviii+514 pp. (2012), University of Chicago Press, Chicago, IL · Zbl 1249.55001
[54] Michor, Peter W., Manifolds of differentiable mappings, Shiva Mathematics Series, iv+158 pp. (1980), Shiva Publishing Ltd., Nantwich · Zbl 0433.58001
[55] Milnor, John, Construction of universal bundles. II, Ann. of Math. (2), 430-436 (1956) · Zbl 0071.17401 · doi:10.2307/1970012
[56] Milnor, John, On spaces having the homotopy type of a \({\rm CW}\)-complex, Trans. Amer. Math. Soc., 272-280 (1959) · Zbl 0084.39002 · doi:10.2307/1993204
[57] M\"{u}ller, Christoph, Equivalences of smooth and continuous principal bundles with infinite-dimensional structure group, Adv. Geom., 605-626 (2009) · Zbl 1184.22011 · doi:10.1515/ADVGEOM.2009.032
[58] Munkres, James R., Topology, xvi+537 pp. (2000), Prentice Hall, Inc., Upper Saddle River, NJ · Zbl 0951.54001
[59] Palais, Richard S., Homotopy theory of infinite dimensional manifolds, Topology, 1-16 (1966) · Zbl 0138.18302 · doi:10.1016/0040-9383(66)90002-4
[60] Pressley, Andrew, Loop groups, Oxford Mathematical Monographs, viii+318 pp. (1986), The Clarendon Press, Oxford University Press, New York · Zbl 0638.22009
[61] Schaefer, H. H., Topological vector spaces, Graduate Texts in Mathematics, xii+346 pp. (1999), Springer-Verlag, New York · Zbl 0983.46002 · doi:10.1007/978-1-4612-1468-7
[62] Segal, Graeme, Classifying spaces and spectral sequences, Inst. Hautes \'{E}tudes Sci. Publ. Math., 105-112 (1968) · Zbl 0199.26404
[63] Selick, Paul, Introduction to homotopy theory, Fields Institute Monographs, xxii+188 pp. (1997), American Mathematical Society, Providence, RI · Zbl 0883.55001 · doi:10.1090/fim/009
[64] Spanier, Edwin H., Algebraic topology, xiv+528 pp. (1966), McGraw-Hill Book Co., New York-Toronto, Ont.-London · Zbl 0810.55001
[65] Stacey, Andrew, Comparative smootheology, Theory Appl. Categ., No. 4, 64-117 (2011) · Zbl 1220.18013
[66] Steenrod, Norman, The topology of fibre bundles, Princeton Landmarks in Mathematics, viii+229 pp. (1999), Princeton University Press, Princeton, NJ · Zbl 0942.55002
[67] tom Dieck, Tammo, Partitions of unity in homotopy theory, Compositio Math., 159-167 (1971) · Zbl 0212.55804
[68] Valdivia, M., On the completion of a bornological space, Arch. Math. (Basel), 608-613 (1977) · Zbl 0382.46002 · doi:10.1007/BF01220461
[69] S. Willard, General Topology. Courier Corporation, 2012.
[70] Wockel, Christoph, Lie group structures on symmetry groups of principal bundles, J. Funct. Anal., 254-288 (2007) · Zbl 1130.22010 · doi:10.1016/j.jfa.2007.05.016
[71] Wockel, Christoph, A generalization of Steenrod’s approximation theorem, Arch. Math. (Brno), 95-104 (2009) · Zbl 1212.58005
[72] Wu, Enxin, Homological algebra for diffeological vector spaces, Homology Homotopy Appl., 339-376 (2015) · Zbl 1318.18007 · doi:10.4310/HHA.2015.v17.n1.a17
[73] Yoshinaga, Ky\^oichi, On a locally convex space introduced by J. S. E. Silva, J. Sci. Hiroshima Univ. Ser. A, 89-98 (1957/58) · Zbl 0080.31303
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.