×

Smooth constructions of homotopy-coherent actions. (English) Zbl 1497.58004

Summary: We prove that, for nice classes of infinite-dimensional smooth groups \(G\), natural constructions in smooth topology and symplectic topology yield homotopically coherent group actions of \(G\). This yields a bridge between infinite-dimensional smooth groups and homotopy theory.
The result relies on two computations: one showing that the diffeological homotopy groups of the Milnor classifying space \(BG\) are naturally equivalent to the (continuous) homotopy groups, and a second showing that a particular strict category localizes to yield the homotopy type of \(BG\).
We then prove a result in symplectic geometry: these methods are applicable to the group of Liouville automorphisms of a Liouville sector. The present work is written with an eye toward Y.-G. Oh and H. L. Tanaka [“Continuous and coherent actions on wrapped Fukaya categories”, Preprint, arXiv:1911.00349], where our constructions show that higher homotopy groups of symplectic automorphism groups map to Fukaya-categorical invariants, and where we prove a conjecture of Teleman from the 2014 ICM in the Liouville and monotone settings.

MSC:

58B05 Homotopy and topological questions for infinite-dimensional manifolds
58D05 Groups of diffeomorphisms and homeomorphisms as manifolds

References:

[1] 10.2140/pjm.2014.272.87 · Zbl 1311.57031 · doi:10.2140/pjm.2014.272.87
[2] ; Christensen, J. Daniel; Wu, Enxin, The homotopy theory of diffeological spaces, New York J. Math., 20, 1269 (2014) · Zbl 1325.57013
[3] ; Christensen, J. Daniel; Wu, Enxin, Tangent spaces and tangent bundles for diffeological spaces, Cah. Topol. Géom. Différ. Catég., 57, 1, 3 (2016) · Zbl 1355.57023
[4] 10.1090/proc/13334 · Zbl 1359.57014 · doi:10.1090/proc/13334
[5] 10.1007/s11856-021-2120-6 · Zbl 1465.57100 · doi:10.1007/s11856-021-2120-6
[6] 10.1007/s10240-019-00112-x · Zbl 1508.53091 · doi:10.1007/s10240-019-00112-x
[7] 10.4310/JSG.2020.v18.n3.a5 · Zbl 1461.53060 · doi:10.4310/JSG.2020.v18.n3.a5
[8] 10.1007/978-3-0346-0189-4 · Zbl 1195.55001 · doi:10.1007/978-3-0346-0189-4
[9] ; Hector, G., Géométrie et topologie des espaces difféologiques, Analysis and geometry in foliated manifolds, 55 (1995) · Zbl 0993.58500
[10] ; Hector, Gilbert; Macías-Virgós, Enrique, Diffeological groups, Recent advances in Lie theory. Res. Exp. Math., 25, 247 (2002) · Zbl 1018.58001
[11] 10.1090/surv/185 · Zbl 1269.53003 · doi:10.1090/surv/185
[12] 10.1007/s40062-018-0209-3 · Zbl 1459.58001 · doi:10.1007/s40062-018-0209-3
[13] ; Leslie, Joshua, On a diffeological group realization of certain generalized symmetrizable Kac-Moody Lie algebras, J. Lie Theory, 13, 2, 427 (2003) · Zbl 1119.17303
[14] ; Losik, M. V., Fréchet manifolds as diffeological spaces, Izv. Vyssh. Uchebn. Zaved. Mat., 5, 36 (1992) · Zbl 0774.58002
[15] 10.1515/9781400830558 · Zbl 1175.18001 · doi:10.1515/9781400830558
[16] ; Magnot, Jean-Pierre, Difféologie du fibré d’holonomie d’une connexion en dimension infinie, C. R. Math. Acad. Sci. Soc. R. Can., 28, 4, 121 (2006)
[17] 10.1142/S0219887813500436 · Zbl 1278.58001 · doi:10.1142/S0219887813500436
[18] 10.1088/1742-6596/738/1/012088 · Zbl 1342.58008 · doi:10.1088/1742-6596/738/1/012088
[19] 10.1515/dema-2018-0001 · Zbl 1387.22019 · doi:10.1515/dema-2018-0001
[20] 10.1088/1361-6544/abaa9f · Zbl 1454.39031 · doi:10.1088/1361-6544/abaa9f
[21] 10.1007/s00023-020-00896-3 · Zbl 1447.35287 · doi:10.1007/s00023-020-00896-3
[22] 10.1016/j.topol.2017.10.011 · Zbl 1457.53014 · doi:10.1016/j.topol.2017.10.011
[23] 10.2307/1969609 · Zbl 0071.17302 · doi:10.2307/1969609
[24] 10.2989/16073600209486006 · Zbl 1051.54009 · doi:10.2989/16073600209486006
[25] 10.1090/mmono/158 · doi:10.1090/mmono/158
[26] 10.1016/j.topol.2016.01.014 · Zbl 1341.58001 · doi:10.1016/j.topol.2016.01.014
[27] 10.1016/j.topol.2017.02.002 · Zbl 1361.53026 · doi:10.1016/j.topol.2017.02.002
[28] 10.1007/s00006-017-0769-z · Zbl 1388.58002 · doi:10.1007/s00006-017-0769-z
[29] 10.13001/1081-3810.3121 · Zbl 1393.58001 · doi:10.13001/1081-3810.3121
[30] 10.1080/03081087.2018.1472202 · Zbl 1420.53039 · doi:10.1080/03081087.2018.1472202
[31] 10.1007/BF02684591 · Zbl 0199.26404 · doi:10.1007/BF02684591
[32] 10.1007/BFb0089728 · Zbl 0501.58010 · doi:10.1007/BFb0089728
[33] ; Teleman, Constantin, Gauge theory and mirror symmetry, Proceedings of the International Congress of Mathematicians, II, 1309 (2014) · Zbl 1373.57050
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.