×

Higher level cusp forms on exceptional group of type \(E_7\). (English) Zbl 1531.11048

Let \(N \in \mathbb{Z}_{\geq 1}\). Let \(S_k(\Gamma_0(N), \chi)^{\mathrm{new}}\) be the space of elliptic newforms of integral weight \(k \geq 1\) and level \(\Gamma_0(N)\) with character \(\chi\) such that \(\chi(-1) = (-1)^k\), and let \(S_k(\Gamma_0(N), \chi)^{\mathrm{ns}}\) be the subspace of forms whose associated representation \(\pi\) has no supercuspidal components. The main result (Theorem 1.1) of this paper constructs from every \(h \in S_k(\Gamma_0(N), \chi)^{\mathrm{ns}}\) a cuspidal automorphic representation \(\Pi\) of \(\mathbf{G} = \mathrm{GE}_{7, 3}\) with central character \(\chi^3\). Here \(\mathrm{GE}_{7, 3}\) is the exceptional similitude group of type \(\mathrm{E}_{7, 3}\).
More concretely and classically, one constructs a complex linear map \(S_k(\Gamma_0(N), \chi)^{\mathrm{ns}} \to S_{k+8}(\Gamma^{\mathbf{G}}_0(N), \chi^3)\) that preserves Hecke eigenforms off \(N\). The standard \(L\)-function of degree \(56\) of \(\Pi\) (Theorem 1.2) and the adjoint \(L\)-function of degree \(133\) (Theorem 1.3) are also expressed explicitly in terms of \(L\)-functions of \(\pi\).
The proof is based on techniques with degenerate Whittaker functions developed by Ikeda and Yamana. When \(N=1\), the earlier result by the same authors [Compos. Math. 152, No.2, 223–254 (2016; Zbl 1337.11031)] are recovered.

MSC:

11F55 Other groups and their modular and automorphic forms (several variables)
11F70 Representation-theoretic methods; automorphic representations over local and global fields
22E55 Representations of Lie and linear algebraic groups over global fields and adèle rings
20G41 Exceptional groups

Citations:

Zbl 1337.11031

References:

[1] W. L. Baily Jr., An exceptional arithmetic group and its Eisenstein series, Ann. of Math. (2) 91 (1970), 512-549. · Zbl 0202.07901 · doi:10.2307/1970636
[2] N. Bourbaki, Éléments de mathématique, fasc. 34: Groupes et algèbres de Lie, chapitres 4-6, Actualités Sci. Indust. 1337, Hermann, Paris, 1968. · Zbl 0186.33001
[3] D. Bump, Automorphic Forms and Representations, Cambridge Stud. Adv. Math. 55, Cambridge Univ. Press, Cambridge, 1997. · Zbl 0911.11022
[4] W. T. Gan and H. Y. Loke, Modular forms of level p on the exceptional tube domain, J. Ramanujan Math. Soc. 12 (1997), no. 2, 161-202. · Zbl 0959.11019
[5] D. Ginzburg, On standard L-functions for \( E_6 and E_7\), J. Reine Angew. Math. 465 (1995), 101-131. · Zbl 0832.11021 · doi:10.1515/crll.1995.465.101
[6] K. Hiraga and T. Ikeda, On the Kohnen plus space for Hilbert modular forms of half-integral weight, I, Compos. Math. 149 (2013), no. 12, 1963-2010. · Zbl 1368.11044 · doi:10.1112/S0010437X13007276
[7] T. Ikeda, On the lifting of elliptic cusp forms to Siegel cusp forms of degree \(2 n\), Ann. of Math. (2) 154 (2001), no. 3, 641-681. · Zbl 0998.11023 · doi:10.2307/3062143
[8] T. Ikeda, On the lifting of Hermitian modular forms, Compos. Math. 144 (2008), no. 5, 1107-1154. · Zbl 1155.11025 · doi:10.1112/S0010437X08003643
[9] T. Ikeda, On the lifting of automorphic representations of
(( \operatorname{PGL}_2(\mathbb{A}) to \operatorname{Sp}_{2 n} \)(\mathbb{A})or \widetilde{\operatorname{Sp}_{2 n + 1} \) ( \mathbb{A} )} \)over a totally real field, preprint, http://www.math.kyoto-u.ac.jp/ ikeda/adelic1.pdf (accessed 3 May 2023).
[10] T. Ikeda and S. Yamana, On the lifting of Hilbert cusp forms to Hilbert-Siegel cusp forms, Ann. Sci. Éc. Norm. Supér. (4) 53 (2020), no. 5, 1121-1181. · Zbl 1475.11078 · doi:10.24033/asens.2442
[11] C. Jantzen, Some remarks on degenerate principal series, Pacific J. Math. 186 (1998), no. 1, 67-87. · Zbl 0921.22008 · doi:10.2140/pjm.1998.186.67
[12] M. L. Karel, Functional equations of Whittaker functions on p-adic groups, Amer. J. Math. 101 (1979), no. 6, 1303-1325. · Zbl 0427.22011 · doi:10.2307/2374142
[13] M. L. Karel, Values of certain Whittaker functions on a p-adic reductive group, Illinois J. Math. 26 (1982), no. 4, 552-575. · Zbl 0488.22021
[14] M. L. Karel, On certain Eisenstein series and their Fourier coefficients, Ph.D. dissertation, University of Chicago, Chicago, 1972.
[15] H. H. Kim, Exceptional modular form of weight 4 on an exceptional domain contained in \( \mathbb{C}^{27} \), Rev. Mat. Iberoam. 9 (1993), no. 1, 139-200. · Zbl 0777.11015 · doi:10.4171/RMI/134
[16] H. H. Kim, On local L-functions and normalized intertwining operators, Canad. J. Math. 57 (2005), no. 3, 535-597. · Zbl 1096.11019 · doi:10.4153/CJM-2005-023-x
[17] H. H. Kim and T. Yamauchi, “A conditional construction of Artin representations for real analytic Siegel cusp forms of weight (2,1)” in Advances in the Theory of Automorphic Forms and their L-Functions, Contemp. Math. 664, Amer. Math. Soc., Providence, 2016, 225-260. · Zbl 1418.11081 · doi:10.1090/conm/664/13061
[18] H. H. Kim and T. Yamauchi, Cusp forms on the exceptional group of type \( E_7\), Compos. Math. 152 (2016), no. 2, 223-254. · Zbl 1337.11031 · doi:10.1112/S0010437X15007538
[19] A. W. Knapp, Representation Theory of Semisimple Groups, Princeton Math. Ser. 36, Princeton Univ. Press, Princeton, 1986. · Zbl 0604.22001 · doi:10.1515/9781400883974
[20] D. Loeffler and J. Weinstein, On the computation of local components of a newform, Math. Comp. 81 (2012), no. 278, 1179-1200. · Zbl 1332.11056 · doi:10.1090/S0025-5718-2011-02530-5
[21] J. G. M. Mars, Les nombres de Tamagawa de certains groupes exceptionnels, Bull. Soc. Math. France 94 (1966), 97-140. · Zbl 0146.04601
[22] M. Miyauchi and T. Yamauchi, An explicit computation of p-stabilized vectors, J. Théor. Nombres Bordeaux 26 (2014), no. 2, 531-558. · Zbl 1369.11039
[23] R. Schmidt, Some remarks on local newforms for \( \operatorname{GL}(2)\), J. Ramanujan Math. Soc. 17 (2002), no. 2, 115-147. · Zbl 0997.11040
[24] R. Schmidt, Archimedean aspects of Siegel modular forms of degree 2, Rocky Mountain J. Math. 47 (2017), no. 7, 2381-2422. · Zbl 1430.11062 · doi:10.1216/RMJ-2017-47-7-2381
[25] T. A. Springer, “Reductive groups” in Automorphic Forms, Representations and L-Functions (Corvallis, 1977), Part 1, Proc. Sympos. Pure Math. 33, Amer. Math. Soc., Providence, 1979, 3-27. · Zbl 0416.20034
[26] M. Tadic, An external approach to unitary representations, Bull. Amer. Math. Soc. (N.S.) 28 (1993), no. 2, 215-252. · Zbl 0799.22010 · doi:10.1090/S0273-0979-1993-00372-0
[27] M. H. Weissman, The Fourier-Jacobi map and small representations, Represent. Theory 7 (2003), 275-299. · Zbl 1065.22015 · doi:10.1090/S1088-4165-03-00197-3
[28] S. Yamana, On the lifting of elliptic cusp forms to cusp forms on quaternionic unitary groups, J. Number Theory 130 (2010), no. 11, 2480-2527. · Zbl 1210.11062 · doi:10.1016/j.jnt.2010.03.020
[29] S. Yamana, Siegel series for skew Hermitian forms over quaternion algebras, Abh. Math. Semin. Univ. Hambg. 87 (2017), no. 1, 43-59. · Zbl 1426.11032 · doi:10.1007/s12188-016-0127-4
[30] S. Yamana, The CAP representations indexed by Hilbert cusp forms, preprint, arXiv:1609.07879v1 [math.NT]
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.