×

On the computation of local components of a newform. (English) Zbl 1332.11056

Math. Comput. 81, No. 278, 1179-1200 (2012); erratum ibid. 84, No. 291, 355-356 (2015).
Given a cuspidal newform \(f\) for the congruence subgroup \(\Gamma_1(N)\) of weight \(k\geq 2\) and a character \(\varepsilon\), there is a unique cuspidal automorphic representation \(\pi_f\) of \(\mathrm{GL}_2(\mathbb{A}_\mathbb{Q})\) attached to \(f\). The Archimedean component of \(\pi_f\) is uniquely determined by the weight \(k\) of \(f\). It is the unique discrete series representation of \(\mathrm{GL}_2(\mathbb{R})\) of lowest \(\mathrm{O}(2)\)-type \(k\). The local components of \(\pi_f\) at finite primes \(p\nmid N\) are unramified representations of \(\mathrm{GL}_2(\mathbb{Q}_p)\). They are determined uniquely by its Satake parameters, which are given in terms of \(f\) as roots of the polynomial \(X^2-a_pX+\varepsilon(p)p^{k-1}\), where \(a_p\) is the \(p\)th Fourier coefficient of \(f\).
The goal of this paper is to give an algorithm for determining the local components of \(\pi_f\) at the remaining finite primes \(p\mid N\). According to H. Carayol [Ann. Sci. Éc. Norm. Supér. (4) 19, No. 3, 409–468 (1986; Zbl 0616.10025)], in terms of Galois representations, this problem is equivalent to the problem of determining the restriction of the local \(\lambda\)-adic Galois representations \(\rho_{f,\lambda}\) of the Galois group \(\mathrm{Gal}(\overline{\mathbb{Q}}/\mathbb{Q})\) attached to \(f\) to the Galois group \(\mathrm{Gal}(\overline{\mathbb Q}_p/\mathbb{Q}_p)\) for \(p\mid N\) and primes \(\lambda\) not dividing \(p\).
If the local component \(\pi_{f,p}\) at \(p\mid N\) is not supercuspidal, the problem is not too difficult, as \(\pi_{f,p}\) is determined by the \(p\)th Fourier coefficient of \(f\) and its twists by an explicit set of Dirichlet characters of \(p\)-power conductor. If \(\pi_{f,p}\) is supercuspidal, it is induced from a type \(\tau\) of a maximal compact modulo center subgroup of \(\mathrm{GL}_2(\mathbb{Q}_p)\). Then, the strategy is to find a canonical model for \(\tau\), realized in the cohomology of a modular curve. The dual of the latter space is explicitly computed using modular symbols.

MSC:

11F70 Representation-theoretic methods; automorphic representations over local and global fields
11F11 Holomorphic modular forms of integral weight
11Y99 Computational number theory

Citations:

Zbl 0616.10025

Software:

Magma; SageMath

References:

[1] A. O. L. Atkin and Wen Ch’ing Winnie Li, Twists of newforms and pseudo-eigenvalues of \?-operators, Invent. Math. 48 (1978), no. 3, 221 – 243. · Zbl 0369.10016 · doi:10.1007/BF01390245
[2] Christophe Breuil, Brian Conrad, Fred Diamond, and Richard Taylor, On the modularity of elliptic curves over \?: wild 3-adic exercises, J. Amer. Math. Soc. 14 (2001), no. 4, 843 – 939. · Zbl 0982.11033
[3] Wieb Bosma, John Cannon, and Catherine Playoust, The Magma algebra system. I. The user language, J. Symbolic Comput. 24 (1997), no. 3-4, 235 – 265. Computational algebra and number theory (London, 1993). · Zbl 0898.68039 · doi:10.1006/jsco.1996.0125
[4] Colin J. Bushnell and Guy Henniart, The local Langlands conjecture for \?\?(2), Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 335, Springer-Verlag, Berlin, 2006. · Zbl 1100.11041
[5] Christophe Breuil and Ariane Mézard, Multiplicités modulaires et représentations de \?\?\(_{2}\)(\?_{\?}) et de \?\?\?(\?_{\?}/\?_{\?}) en \?=\?, Duke Math. J. 115 (2002), no. 2, 205 – 310 (French, with English and French summaries). With an appendix by Guy Henniart. · Zbl 1042.11030 · doi:10.1215/S0012-7094-02-11522-1
[6] Daniel Bump, Automorphic forms and representations, Cambridge Studies in Advanced Mathematics, vol. 55, Cambridge University Press, Cambridge, 1997. · Zbl 0868.11022
[7] Henri Carayol, Sur les représentations \?-adiques attachées aux formes modulaires de Hilbert, C. R. Acad. Sci. Paris Sér. I Math. 296 (1983), no. 15, 629 – 632 (French, with English summary). · Zbl 0537.10018
[8] Henri Carayol, Sur les représentations \?-adiques associées aux formes modulaires de Hilbert, Ann. Sci. École Norm. Sup. (4) 19 (1986), no. 3, 409 – 468 (French). · Zbl 0616.10025
[9] William Casselman, On some results of Atkin and Lehner, Math. Ann. 201 (1973), 301 – 314. · Zbl 0239.10015 · doi:10.1007/BF01428197
[10] William Casselman, The restriction of a representation of \?\?\(_{2}\)(\?) to \?\?\(_{2}\)(\?), Math. Ann. 206 (1973), 311 – 318. · Zbl 0253.20062 · doi:10.1007/BF01355984
[11] Stephen S. Gelbart, Automorphic forms on adèle groups, Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1975. Annals of Mathematics Studies, No. 83. · Zbl 0329.10018
[12] Anna Rio, Dyadic exercises for octahedral extensions. II, J. Number Theory 118 (2006), no. 2, 172 – 188. · Zbl 1149.11053 · doi:10.1016/j.jnt.2005.08.007
[13] J. D. Rogawski and J. B. Tunnell, On Artin \?-functions associated to Hilbert modular forms of weight one, Invent. Math. 74 (1983), no. 1, 1 – 42. · Zbl 0523.12009 · doi:10.1007/BF01388529
[14] Sage mathematics software, version 4.4.2, http://www.sagemath.org/.
[15] William Stein, Modular forms, a computational approach, Graduate Studies in Mathematics, vol. 79, American Mathematical Society, Providence, RI, 2007. With an appendix by Paul E. Gunnells. · Zbl 1110.11015
[16] J. Tate, Number theoretic background, Automorphic forms, representations and \?-functions (Proc. Sympos. Pure Math., Oregon State Univ., Corvallis, Ore., 1977) Proc. Sympos. Pure Math., XXXIII, Amer. Math. Soc., Providence, R.I., 1979, pp. 3 – 26.
[17] André Weil, Exercices dyadiques, Invent. Math. 27 (1974), 1 – 22 (French). · Zbl 0307.12017 · doi:10.1007/BF01389962
[18] Jared Weinstein, Hilbert modular forms with prescribed ramification, Int. Math. Res. Not. IMRN 8 (2009), 1388 – 1420. · Zbl 1244.11047 · doi:10.1093/imrn/rnn161
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.