×

An external approach to unitary representations. (English) Zbl 0799.22010

In the early 1980’s, the author announced his solution to the problem of classifying the irreducible unitary representations of \(GL_ n(F)\), \(F\) a non-archimedean local field [cf. Ann. Sci. Ec. Norm. Supér., IV. Sér. 19, 335-382 (1986; Zbl 0614.22005)]; he also recognized that the same result holds over \(\mathbb{R}\) and \(\mathbb{C}\) [cf. MPI/SFB 85-22, Bonn (1985)]. The main purpose of the present paper is to present the ideas which lie behind these results. The author stresses that his approach is an “external” one, i.e., no attempt is made to analyze the “internal” structure of the representations involved, for example, their decomposition upon restriction to certain compact subgroups. The first part of the Classification Theorem explicitly describes certain elements of \(\widehat{G}\) (which in the case of \(F = \mathbb{C}\) amounts to the well- known list of Gelfand-Naimark, plus Stein’s “degenerate” complementary series); the second part asserts that this list exhausts \(\widehat{G}\) (here a direct approach is used, without undue attention paid to the non- unitary dual). In the course of his exposition, the author also gives a nice survey of general representation theory, including even definitions of such basic notions as Haar measure, algebraic groups, \(p\)-adic numbers, the unitary dual, Jacquet modules, etc. Therefore this nicely written paper is to be recommended to non-experts as well as experts on the field.

MSC:

22E50 Representations of Lie and linear algebraic groups over local fields
22-02 Research exposition (monographs, survey articles) pertaining to topological groups

Citations:

Zbl 0614.22005

References:

[1] James Arthur, Automorphic representations and number theory, 1980 Seminar on Harmonic Analysis (Montreal, Que., 1980) CMS Conf. Proc., vol. 1, Amer. Math. Soc., Providence, R.I., 1981, pp. 3 – 51.
[2] Dan Barbasch, The unitary dual for complex classical Lie groups, Invent. Math. 96 (1989), no. 1, 103 – 176. · Zbl 0692.22006 · doi:10.1007/BF01393972
[3] V. Bargmann, Irreducible unitary representations of the Lorentz group, Ann. of Math. (2) 48 (1947), 568 – 640. · Zbl 0045.38801 · doi:10.2307/1969129
[4] I. N. Bernšteĭn, All reductive \?-adic groups are of type I, Funkcional. Anal. i Priložen. 8 (1974), no. 2, 3 – 6 (Russian).
[5] -, P-invariant distributions on \( {GL(N)}\) and the classification of unitary representations of \( {GL(N)}\) (nonarchimedean case), Lie Group Representations II, Proceedings, Univ. Maryland 1982-83, Lecture Notes in Math., vol. 1041, Springer-Verlag, Berlin, 1984, pp. 50-102.
[6] I. N. Bernšteĭn and A. V. Zelevinskiĭ, Representations of the group \?\?(\?,\?), where \? is a local non-Archimedean field, Uspehi Mat. Nauk 31 (1976), no. 3(189), 5 – 70 (Russian). · Zbl 0342.43017
[7] I. N. Bernstein and A. V. Zelevinsky, Induced representations of reductive \?-adic groups. I, Ann. Sci. École Norm. Sup. (4) 10 (1977), no. 4, 441 – 472. · Zbl 0412.22015
[8] Armand Borel, Linear algebraic groups, Notes taken by Hyman Bass, W. A. Benjamin, Inc., New York-Amsterdam, 1969. · Zbl 0186.33201
[9] Armand Borel and Nolan R. Wallach, Continuous cohomology, discrete subgroups, and representations of reductive groups, Annals of Mathematics Studies, vol. 94, Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1980. · Zbl 0443.22010
[10] Nicolas Bourbaki, Éléments de mathématique: groupes et algèbres de Lie, Masson, Paris, 1982 (French). Chapitre 9. Groupes de Lie réels compacts. [Chapter 9. Compact real Lie groups]. · Zbl 0505.22006
[11] -, Mesure de Haar, Intégration, chapter 7, Hermann, Paris, 1963.
[12] H. Carayol, Représentations cuspidales du groupe linéaire, Ann. Sci. École Norm. Sup. (4) 17 (1984), no. 2, 191 – 225 (French). · Zbl 0549.22009
[13] P. Cartier, Representations of \?-adic groups: a survey, Automorphic forms, representations and \?-functions (Proc. Sympos. Pure Math., Oregon State Univ., Corvallis, Ore., 1977) Proc. Sympos. Pure Math., XXXIII, Amer. Math. Soc., Providence, R.I., 1979, pp. 111 – 155. · Zbl 0421.22010
[14] W. Casselman, Introduction to the theory of admissible representations of p-adic reductive groups, preprint.
[15] William Casselman and Dragan Miličić, Asymptotic behavior of matrix coefficients of admissible representations, Duke Math. J. 49 (1982), no. 4, 869 – 930. · Zbl 0524.22014 · doi:10.1215/S0012-7094-82-04943-2
[16] Laurent Clozel, Progrès récents vers la classification du dual unitaire des groupes réductifs réels, Astérisque 152-153 (1987), 5, 229 – 252 (1988) (French). Séminaire Bourbaki, Vol. 1986/87. · Zbl 0634.22013
[17] P. Deligne, D. Kazhdan, and M.-F. Vignéras, Représentations des algèbres centrales simples \?-adiques, Representations of reductive groups over a local field, Travaux en Cours, Hermann, Paris, 1984, pp. 33 – 117 (French). · Zbl 0583.22009
[18] J. Dixmier, Les \( {C^{\ast}}\)-algebras et leurs représentations, Gauthiers-Villars, Paris, 1969. · Zbl 0174.18601
[19] Michel Duflo, Représentations de carré intégrable des groupes semi-simples réels, Séminaire Bourbaki, 30e année (1977/78), Lecture Notes in Math., vol. 710, Springer, Berlin, 1979, pp. Exp. No. 508, pp. 22 – 40 (French).
[20] Michel Duflo, Théorie de Mackey pour les groupes de Lie algébriques, Acta Math. 149 (1982), no. 3-4, 153 – 213 (French). · Zbl 0529.22011 · doi:10.1007/BF02392353
[21] J. M. G. Fell, Non-unitary dual spaces of groups, Acta Math. 114 (1965), 267 – 310. · Zbl 0152.33204 · doi:10.1007/BF02391824
[22] Stephen S. Gelbart, Automorphic forms on adèle groups, Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1975. Annals of Mathematics Studies, No. 83. · Zbl 0329.10018
[23] Stephen Gelbart, Elliptic curves and automorphic representations, Advances in Math. 21 (1976), no. 3, 235 – 292. · Zbl 0336.14003 · doi:10.1016/S0001-8708(76)80001-1
[24] Stephen Gelbart, An elementary introduction to the Langlands program, Bull. Amer. Math. Soc. (N.S.) 10 (1984), no. 2, 177 – 219. · Zbl 0539.12008
[25] I. M. Gel\(^{\prime}\)fand and M. I. Graev, Unitary representations of the real unimodular group (principal nondegenerate series), Izvestiya Akad. Nauk SSSR. Ser. Mat. 17 (1953), 189 – 248 (Russian).
[26] I. M. Gel\(^{\prime}\)fand, M. I. Graev, and I. I. Pyatetskii-Shapiro, Representation theory and automorphic functions, Translated from the Russian by K. A. Hirsch, W. B. Saunders Co., Philadelphia, Pa.-London-Toronto, Ont., 1969.
[27] I. M. Gelfand and D. A. Kazhdan, Representations of \( {GL(n,k)}\), Lie Groups and Their Representations, Halstead Press, Budapest, 1974, pp. 95-118.
[28] I. M. Gel\(^{\prime}\)fand and M. A. Naĭmark, Unitary representations of the Lorentz group, Izvestiya Akad. Nauk SSSR. Ser. Mat. 11 (1947), 411 – 504 (Russian). · Zbl 0037.15303
[29] I. M. Gelfand and M. A. Neumark, Unitäre Darstellungen der klassischen Gruppen, Akademie-Verlag, Berlin, 1957 (German). · Zbl 0077.03405
[30] I. Gelfand and D. Raikov, Irreducible unitary representations of locally bicompact groups, Rec. Math. [Mat. Sbornik] N. S. 13(55) (1943), 301 – 316. · Zbl 0063.01566
[31] Harish-Chandra, Harmonic analysis on semisimple Lie groups, Bull. Amer. Math. Soc. 76 (1970), 529 – 551. · Zbl 0212.15101
[32] Harish-Chandra, Harmonic analysis on reductive \?-adic groups, Harmonic analysis on homogeneous spaces (Proc. Sympos. Pure Math., Vol. XXVI, Williams Coll., Williamstown, Mass., 1972) Amer. Math. Soc., Providence, R.I., 1973, pp. 167 – 192.
[33] Emmy Noether, Gesammelte Abhandlungen, Springer-Verlag, Berlin-New York, 1983 (German). Edited and with an introduction by Nathan Jacobson; With an introductory address by P. S. Alexandrov [P. S. Aleksandrov]. · Zbl 0504.01035
[34] Guy Henniart, On the local Langlands conjecture for \?\?(\?): the cyclic case, Ann. of Math. (2) 123 (1986), no. 1, 145 – 203. · Zbl 0588.12010 · doi:10.2307/1971354
[35] Roger E. Howe, Tamely ramified supercuspidal representations of \?\?_{\?}, Pacific J. Math. 73 (1977), no. 2, 437 – 460. · Zbl 0404.22019
[36] Roger E. Howe and Calvin C. Moore, Asymptotic properties of unitary representations, J. Funct. Anal. 32 (1979), no. 1, 72 – 96. · Zbl 0404.22015 · doi:10.1016/0022-1236(79)90078-8
[37] Hervé Jacquet, Generic representations, Non-commutative harmonic analysis (Actes Colloq., Marseille-Luminy, 1976), Springer, Berlin, 1977, pp. 91 – 101. Lecture Notes in Math., Vol. 587.
[38] -, On the residual spectrum of \( {GL(n)}\), Lie Group Representations II, Proceedings, Univ. of Maryland 1982-83, Lecture Notes in Math., vol. 1041, Springer-Verlag, Berlin, 1984, pp. 185-208.
[39] H. Jacquet and R. P. Langlands, Automorphic forms on \?\?(2), Lecture Notes in Mathematics, Vol. 114, Springer-Verlag, Berlin-New York, 1970. · Zbl 0236.12010
[40] Chris Jantzen, Degenerate principal series for symplectic groups, Mem. Amer. Math. Soc. 102 (1993), no. 488, xiv+111. · Zbl 0814.22004 · doi:10.1090/memo/0488
[41] D. A. Každan, On the connection of the dual space of a group with the structure of its closed subgroups, Funkcional. Anal. i Priložen. 1 (1967), 71 – 74 (Russian).
[42] A. A. Kirillov, Infinite-dimensional representations of the complete matrix group, Dokl. Akad. Nauk SSSR 144 (1962), 37 – 39 (Russian).
[43] A. A. Kirillov, Elements of the theory of representations, Springer-Verlag, Berlin-New York, 1976. Translated from the Russian by Edwin Hewitt; Grundlehren der Mathematischen Wissenschaften, Band 220. · Zbl 0342.22001
[44] Anthony W. Knapp, Representation theory of semisimple groups, Princeton Mathematical Series, vol. 36, Princeton University Press, Princeton, NJ, 1986. An overview based on examples. · Zbl 0604.22001
[45] A. W. Knapp and Gregg Zuckerman, Classification theorems for representations of semisimple Lie groups, Non-commutative harmonic analysis (Actes Colloq., Marseille-Luminy, 1976), Springer, Berlin, 1977, pp. 138 – 159. Lecture Notes in Math., Vol. 587. · Zbl 0329.22013
[46] Philip Kutzko and Allen Moy, On the local Langlands conjecture in prime dimension, Ann. of Math. (2) 121 (1985), no. 3, 495 – 517. · Zbl 0609.12017 · doi:10.2307/1971207
[47] R. P. Langlands, Problems in the theory of automorphic forms, Lectures in modern analysis and applications, III, Springer, Berlin, 1970, pp. 18 – 61. Lecture Notes in Math., Vol. 170. · Zbl 0225.14022
[48] R. P. Langlands, On the classification of irreducible representations of real algebraic groups, Representation theory and harmonic analysis on semisimple Lie groups, Math. Surveys Monogr., vol. 31, Amer. Math. Soc., Providence, RI, 1989, pp. 101 – 170. · Zbl 0741.22009 · doi:10.1090/surv/031/03
[49] F. I. Mautner, Spherical functions over \?-adic fields. I, Amer. J. Math. 80 (1958), 441 – 457. · Zbl 0092.12501 · doi:10.2307/2372794
[50] Dragan Miličić, On \?*-algebras with bounded trace, Glasnik Mat. Ser. III 8(28) (1973), 7 – 22 (English, with Serbo-Croatian summary). · Zbl 0265.46072
[51] C. Mœglin and J.-L. Waldspurger, Le spectre résiduel de \?\?(\?), Ann. Sci. École Norm. Sup. (4) 22 (1989), no. 4, 605 – 674 (French). · Zbl 0696.10023
[52] Allen Moy, Local constants and the tame Langlands correspondence, Amer. J. Math. 108 (1986), no. 4, 863 – 930. · Zbl 0597.12019 · doi:10.2307/2374518
[53] François Rodier, Représentations de \?\?(\?,\?) où \? est un corps \?-adique, Bourbaki Seminar, Vol. 1981/1982, Astérisque, vol. 92, Soc. Math. France, Paris, 1982, pp. 201 – 218 (French).
[54] Siddhartha Sahi, On Kirillov’s conjecture for Archimedean fields, Compositio Math. 72 (1989), no. 1, 67 – 86. · Zbl 0693.22006
[55] P. J. Sally and M. Tadić, Induced representations and classifications for \( {GS_{p}(2,F)}\) and \( {Sp(2,F)}\), Mém. Soc. Math. France 52 (1993).
[56] Freydoon Shahidi, Fourier transforms of intertwining operators and Plancherel measures for \?\?(\?), Amer. J. Math. 106 (1984), no. 1, 67 – 111. · Zbl 0567.22008 · doi:10.2307/2374430
[57] Freydoon Shahidi, A proof of Langlands’ conjecture on Plancherel measures; complementary series for \?-adic groups, Ann. of Math. (2) 132 (1990), no. 2, 273 – 330. · Zbl 0780.22005 · doi:10.2307/1971524
[58] Allan J. Silberger, The Langlands quotient theorem for \?-adic groups, Math. Ann. 236 (1978), no. 2, 95 – 104. · Zbl 0362.20029 · doi:10.1007/BF01351383
[59] Allan J. Silberger, Introduction to harmonic analysis on reductive \?-adic groups, Mathematical Notes, vol. 23, Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1979. Based on lectures by Harish-Chandra at the Institute for Advanced Study, 1971 – 1973.
[60] Birgit Speh, The unitary dual of \?\?(3,\?) and \?\?(4,\?), Math. Ann. 258 (1981/82), no. 2, 113 – 133. · Zbl 0483.22005 · doi:10.1007/BF01450529
[61] Birgit Speh, Unitary representations of \?\?(\?,\?) with nontrivial (\?,\?)-cohomology, Invent. Math. 71 (1983), no. 3, 443 – 465. · Zbl 0505.22015 · doi:10.1007/BF02095987
[62] E. M. Stein, Analysis in matrix spaces and some new representations of \?\?(\?,\?), Ann. of Math. (2) 86 (1967), 461 – 490. · Zbl 0188.45303 · doi:10.2307/1970611
[63] Marko Tadić, Unitary dual of \?-adic \?\?(\?). Proof of Bernstein conjectures, Bull. Amer. Math. Soc. (N.S.) 13 (1985), no. 1, 39 – 42. · Zbl 0583.22008
[64] -, Unitary representations of general linear group over real and complex field, preprint MPI/SFB 85-22 Bonn, 1985.
[65] Marko Tadić, Classification of unitary representations in irreducible representations of general linear group (non-Archimedean case), Ann. Sci. École Norm. Sup. (4) 19 (1986), no. 3, 335 – 382. · Zbl 0614.22005
[66] Marko Tadić, Topology of unitary dual of non-Archimedean \?\?(\?), Duke Math. J. 55 (1987), no. 2, 385 – 422. · Zbl 0668.22006 · doi:10.1215/S0012-7094-87-05522-0
[67] M. Tadić, On limits of characters of irreducible unitary representations, Glas. Mat. Ser. III 23(43) (1988), no. 1, 15 – 25 (English, with Serbo-Croatian summary). · Zbl 0655.22003
[68] Marko Tadić, Geometry of dual spaces of reductive groups (non-Archimedean case), J. Analyse Math. 51 (1988), 139 – 181. · Zbl 0664.22010 · doi:10.1007/BF02791122
[69] Marko Tadić, Induced representations of \?\?(\?,\?) for \?-adic division algebras \?, J. Reine Angew. Math. 405 (1990), 48 – 77. · Zbl 0684.22008 · doi:10.1515/crll.1990.405.48
[70] Marko Tadić, On Jacquet modules of induced representations of \?-adic symplectic groups, Harmonic analysis on reductive groups (Brunswick, ME, 1989) Progr. Math., vol. 101, Birkhäuser Boston, Boston, MA, 1991, pp. 305 – 314. · Zbl 0760.22008
[71] D. A. Vogan, Representations of real reductive groups, Birkhäuser, Boston, MA, 1981. · Zbl 0469.22012
[72] David A. Vogan Jr., Unitarizability of certain series of representations, Ann. of Math. (2) 120 (1984), no. 1, 141 – 187. · Zbl 0561.22010 · doi:10.2307/2007074
[73] -, The unitary dual of \( {GL(n)}\) over an archimedean field, Invent. Math. 82 (1986), 449-505. · Zbl 0598.22008
[74] David A. Vogan Jr., Unitary representations of reductive Lie groups, Annals of Mathematics Studies, vol. 118, Princeton University Press, Princeton, NJ, 1987. · Zbl 0626.22011
[75] Nolan R. Wallach, Real reductive groups. I, Pure and Applied Mathematics, vol. 132, Academic Press, Inc., Boston, MA, 1988. · Zbl 0666.22002
[76] Garth Warner, Harmonic analysis on semi-simple Lie groups. I, Springer-Verlag, New York-Heidelberg, 1972. Die Grundlehren der mathematischen Wissenschaften, Band 188. · Zbl 0265.22020
[77] André Weil, Basic number theory, 3rd ed., Springer-Verlag, New York-Berlin, 1974. Die Grundlehren der Mathematischen Wissenschaften, Band 144. · Zbl 0326.12001
[78] A. V. Zelevinsky, Induced representations of reductive \?-adic groups. II. On irreducible representations of \?\?(\?), Ann. Sci. École Norm. Sup. (4) 13 (1980), no. 2, 165 – 210. · Zbl 0441.22014
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.