×

Robust exponential mixing and convergence to equilibrium for singular-hyperbolic attracting sets. (English) Zbl 1530.37052

The authors show the existence of a \(C^2\) open subset \(\mathcal U\) of the space of vector fields such that each vector field \(X \in U\) admits a nontrivial connected singular hyperbolic attracting set \(\Lambda\) such that given \(X \in U\) and \(\mu\) a physical measure supported in \(\Lambda\) the corresponding correlation decays exponentially. They also show exponential convergence to equilibrium.

MSC:

37D05 Dynamical systems with hyperbolic orbits and sets
37D45 Strange attractors, chaotic dynamics of systems with hyperbolic behavior
37D25 Nonuniformly hyperbolic systems (Lyapunov exponents, Pesin theory, etc.)
37C40 Smooth ergodic theory, invariant measures for smooth dynamical systems

References:

[1] Alves, J.F.: Nonuniformly Hyperbolic Attractors: Geometric and Probabilistic Aspects. Springer (2020) · Zbl 1459.37001
[2] Alves, JF; Bonatti, C.; Viana, M., SRB measures for partially hyperbolic systems whose central direction is mostly expanding, Invent. Math., 140, 2, 351-398 (2000) · Zbl 0962.37012 · doi:10.1007/s002220000057
[3] Alves, JF; Luzzatto, S.; Pinheiro, V., Lyapunov exponents and rates of mixing for one-dimensional maps, Ergod. Theory Dyn. Syst., 24, 3, 637-657 (2004) · Zbl 1049.37025 · doi:10.1017/S0143385703000579
[4] Alves, JF; Luzzatto, S.; Pinheiro, V., Markov structures and decay of correlations for non-uniformly expanding dynamical systems, Ann. Inst. H. Poincaré Anal. Non Linéaire, 22, 6, 817-839 (2005) · Zbl 1134.37326 · doi:10.1016/j.anihpc.2004.12.002
[5] Anosov, DV, Geodesic flows on closed Riemannian manifolds of negative curvature, Proc. Steklov Math. Inst., 90, 1-235 (1967) · Zbl 0176.19101
[6] Araujo, V.: Finitely many physical measures for sectional-hyperbolic attracting sets and statistical stability. Ergod. Theory Dyn. Syst. (to appear), 1-28 (2020)
[7] Araujo, V.; Arbieto, A.; Salgado, L., Dominated splittings for flows with singularities, Nonlinearity, 26, 8, 2391 (2013) · Zbl 1290.37012 · doi:10.1088/0951-7715/26/8/2391
[8] Araujo, V.; Butterley, O.; Varandas, P., Open sets of Axiom A flows with exponentially mixing attractors, Proc. Am. Math. Soc., 144, 2971-2984 (2016) · Zbl 1359.37066 · doi:10.1090/proc/13055
[9] Araujo, V.; Galatolo, S.; Pacifico, MJ, Decay of correlations for maps with uniformly contracting fibers and logarithm law for singular hyperbolic attractors, Mathematische Zeitschrift, 276, 3-4, 1001-1048 (2014) · Zbl 1337.37019 · doi:10.1007/s00209-013-1231-0
[10] Araujo, V., Melbourne, I.: Exponential decay of correlations for nonuniformly hyperbolic flows with a \(C^{1+\alpha }\) stable foliation, including the classical Lorenz attractor. Annales Henri Poincaré, 2975-3004 (2016) · Zbl 1367.37033
[11] Araujo, V.; Melbourne, I., Existence and smoothness of the stable foliation for sectional hyperbolic attractors, Bull. Lond. Math. Soc., 49, 2, 351-367 (2017) · Zbl 1378.37070 · doi:10.1112/blms.12037
[12] Araujo, V.; Melbourne, I., Mixing properties and statistical limit theorems for singular hyperbolic flows without a smooth stable foliation, Adv. Math., 349, 212-245 (2019) · Zbl 1442.37019 · doi:10.1016/j.aim.2019.04.007
[13] Araujo, V.; Melbourne, I.; Varandas, P., Rapid mixing for the lorenz attractor and statistical limit laws for their time-1 maps, Commun. Math. Phys., 340, 3, 901-938 (2015) · Zbl 1356.37002 · doi:10.1007/s00220-015-2471-0
[14] Araujo, V., Pacifico, M.J.: Three Dimensional Flows. XXV Brazillian Mathematical Colloquium. IMPA, Rio de Janeiro (2007)
[15] Araujo, V., Pacifico, M.J.: Three-dimensional flows, volume 53 of Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics]. Springer, Heidelberg, (2010). With a foreword by Marcelo Viana · Zbl 1202.37002
[16] Araujo, V.; Pacifico, MJ; Pinheiro, M., Adapted random perturbations for non-uniformly expanding maps, Stoch. Dyn., 14, 4, 1450007 (2014) · Zbl 1326.37002 · doi:10.1142/S0219493714500075
[17] Araujo, V.; Pacifico, MJ; Pujals, ER; Viana, M., Singular-hyperbolic attractors are chaotic, Trans. A.M.S., 361, 2431-2485 (2009) · Zbl 1214.37010 · doi:10.1090/S0002-9947-08-04595-9
[18] Araujo, V.; Souza, A.; Trindade, E., Upper large deviations bound for singular-hyperbolic attracting sets, J. Dyn. Differ. Equ., 31, 2, 601-652 (2019) · Zbl 1451.37045 · doi:10.1007/s10884-018-9723-6
[19] Araujo, V.; Varandas, P., Robust exponential decay of correlations for singular-flows, Commun. Math. Phys., 311, 215-246 (2012) · Zbl 1314.37010 · doi:10.1007/s00220-012-1445-8
[20] Araujo, V., Varandas, P.: Erratum to: robust exponential decay of correlations for singular-flows. Commun. Math. Phys., 1-3 (2015) · Zbl 1417.37048
[21] Arbieto, A., Sectional lyapunov exponents, Proc. Am. Math. Soc., 138, 3171-3178 (2010) · Zbl 1218.37026 · doi:10.1090/S0002-9939-10-10410-9
[22] Avila, A.; Gouëzel, S.; Yoccoz, J-C, Exponential mixing for the Teichmüller flow, Publ. Math. Inst. Hautes Études Sci., 104, 143-211 (2006) · Zbl 1263.37051 · doi:10.1007/s10240-006-0001-5
[23] Bonatti, C.; Pumariño, A.; Viana, M., Lorenz attractors with arbitrary expanding dimension, C. R. Acad. Sci. Paris Sér. I Math., 325, 8, 883-888 (1997) · Zbl 0896.58043 · doi:10.1016/S0764-4442(97)80131-0
[24] Bowen, R.; Ruelle, D., The ergodic theory of Axiom A flows, Invent. Math., 29, 181-202 (1975) · Zbl 0311.58010 · doi:10.1007/BF01389848
[25] Butterley, O.; Melbourne, I., Disintegration of invariant measures for hyperbolic skew products, Israel J. Math., 219, 1, 171-188 (2017) · Zbl 1379.37053 · doi:10.1007/s11856-017-1477-z
[26] Butterley, O.; War, K., Open sets of exponentially mixing anosov flows, J. Eur. Math. Soc., 22, 7, 2253-2285 (2020) · Zbl 1452.37035 · doi:10.4171/JEMS/964
[27] Daltro, D., Varandas, P.: Exponential decay of correlations for gibbs measures and semiflows over \(c^{1+\alpha }\) piecewise expanding maps. Annales Henri Poincaré (2021) · Zbl 1481.37030
[28] Daltro, D., Varandas, P.: Exponential decay of correlations for Gibbs measures on attractors of Axiom A flows. E-prints arXiv:2104.11839 (2021) · Zbl 1481.37030
[29] Dolgopyat, D., On decay of correlations in Anosov flows, Ann. Math., 147, 2, 357-390 (1998) · Zbl 0911.58029 · doi:10.2307/121012
[30] Eslami, P.: Inducing schemes for multi-dimensional piecewise expanding maps. E-prints arXiv:2002.06679 (2020) · Zbl 1486.37021
[31] Field, M.; Melbourne, I.; Törok, A., Stability of mixing and rapid mixing for hyperbolic flows, Ann. Math., 166, 269-291 (2007) · Zbl 1140.37004 · doi:10.4007/annals.2007.166.269
[32] Gouëzel, S., Decay of correlations for nonuniformly expanding systems, Bull. Soc. Math. France, 134, 1, 1-31 (2006) · Zbl 1111.37018 · doi:10.24033/bsmf.2500
[33] Hofbauer, F.; Keller, G., Ergodic properties of invariant measures for piecewise monotonic transformations, Math. Z., 180, 1, 119-140 (1982) · Zbl 0485.28016 · doi:10.1007/BF01215004
[34] Keller, G., Generalized bounded variation and applications to piecewise monotonic transformations, Z. Wahrsch. Verw. Gebiete, 69, 3, 461-478 (1985) · Zbl 0574.28014 · doi:10.1007/BF00532744
[35] Leplaideur, R.; Yang, D., SRB measure for higher dimensional singular partially hyperbolic attractors, Annales de l‘Institut Fourier, 67, 2, 2703-2717 (2017) · Zbl 1403.37041 · doi:10.5802/aif.3148
[36] Melbourne, I., Superpolynomial and polynomial mixing for semiflows and flows, Nonlinearity, 31, 10, R268-R316 (2018) · Zbl 1429.37013 · doi:10.1088/1361-6544/aad309
[37] Melbourne, I.; Török, A., Statistical limit theorems for suspension flows, Israel J. Math., 144, 191-209 (2004) · Zbl 1252.37010 · doi:10.1007/BF02916712
[38] Metzger, R.; Morales, C., Sectional-hyperbolic systems, Ergod. Theory Dyn. Syst., 28, 1587-1597 (2008) · Zbl 1165.37010 · doi:10.1017/S0143385707000995
[39] Morales, CA, Examples of singular-hyperbolic attracting sets, Dyn. Sys. Int. J., 22, 3, 339-349 (2007) · Zbl 1153.37016 · doi:10.1080/14689360701210939
[40] Morales, CA; Pacifico, MJ; Pujals, ER, Singular hyperbolic systems, Proc. Am. Math. Soc., 127, 11, 3393-3401 (1999) · Zbl 0924.58068 · doi:10.1090/S0002-9939-99-04936-9
[41] Morales, CA; Pacifico, MJ; Pujals, ER, Robust transitive singular sets for 3-flows are partially hyperbolic attractors or repellers, Ann. Math., 160, 2, 375-432 (2004) · Zbl 1071.37022 · doi:10.4007/annals.2004.160.375
[42] Newhouse, S.; Pesin, KAY; Hertz, F., On a differentiable linearization theorem of Philip Hartman, Modern Theory of Dynamical Systems: A Tribute to Dmitry Victorovich Anosov, Contemporary Mathematics, 209-262 (2017), New York: Americam Mathematical Society, New York · Zbl 1391.37025 · doi:10.1090/conm/692/13920
[43] Palis, J., de Melo, W.: Geometric Theory of Dynamical Systems. Springer (1982) · Zbl 0491.58001
[44] Pesin, Y.; Sinai, Y., Gibbs measures for partially hyperbolic attractors, Ergod. Theory Dyn. Syst., 2, 417-438 (1982) · Zbl 0519.58035 · doi:10.1017/S014338570000170X
[45] Philipp, W., Stout, W.: Almost Sure Invariance Principles for Partial Sums of Weakly Dependent Random Variables. Memoirs of the American Mathematical Society. American Mathematical Society, American Mathematical Society (1975) · Zbl 0361.60007
[46] Pollicott, M., On the rate of mixing of Axiom A flows, Invent. Math., 81, 3, 413-426 (1985) · Zbl 0591.58025 · doi:10.1007/BF01388579
[47] Ruelle, D., A measure associated with Axiom A attractors, Am. J. Math., 98, 619-654 (1976) · Zbl 0355.58010 · doi:10.2307/2373810
[48] Sinai, Y., Gibbs measures in ergodic theory, Russ. Math. Surv., 27, 21-69 (1972) · Zbl 0246.28008 · doi:10.1070/RM1972v027n04ABEH001383
[49] Tsujii, M., Zhang, Z.: Smooth mixing anosov flows in dimension three are exponential mixing. E-prints arXiv:2006.04293 (2020) · Zbl 1511.37033
[50] Tucker, W., The Lorenz attractor exists, C. R. Acad. Sci. Paris, 328, 1197-1202 (1999) · Zbl 0935.34050 · doi:10.1016/S0764-4442(99)80439-X
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.