×

Decay of correlations for maps with uniformly contracting fibers and logarithm law for singular hyperbolic attractors. (English) Zbl 1337.37019

Math. Z. 276, No. 3-4, 1001-1048 (2014); erratum ibid. 282, No. 1-2, 615-621 (2016).
The paper is devoted to investigation of the statistical properties of skew-product dynamical systems \(F:[0,1]^2\circlearrowleft\) of the form \(F(x,y)=(T(x), G(x,y))\) with the following properties:
(1)
\(F\) is uniformly contracting on each fiber of the natural vertical foliation of the square \([0,1]^2\);
(2)
\(G\) has bounded variation in one direction;
(3)
\(T:[0,1]\circlearrowleft\) is piecewise monotonic with finite \(C^1\) increasing branches and \(\inf_{x\in[0,1]}| T'(x)|>1\), and \(1/T'\) has finite universal \(p\)-bounded variation;
(4)
\(T\) is weakly mixing under unique a.c.i.m.
For such systems the authors prove the existence of a unique physical measure with exponential decay of correlations with respect to Lipschitz observables. Then this result is applied to suitable Poincaré maps of singular hyperbolic (Lorenz-like) flows to deduce exponential decay of correlations and logarithm law for the hitting times to small targets.
See also the erratum to this paper in [ibid. 282, No. 1–2, 615–621 (2016; Zbl 06538600)].

MSC:

37C10 Dynamics induced by flows and semiflows
37C45 Dimension theory of smooth dynamical systems
37C40 Smooth ergodic theory, invariant measures for smooth dynamical systems
37D30 Partially hyperbolic systems and dominated splittings
37D25 Nonuniformly hyperbolic systems (Lyapunov exponents, Pesin theory, etc.)

Citations:

Zbl 06538600

References:

[1] Abraham, R., Robbin, J.: Transversal Mappings and Flows. An Appendix by Al Kelley. W. A. Benjamin Inc., New York (1967) · Zbl 0171.44404
[2] Afraimovich, V.S., Bykov, V.V., Shil’nikov, L.P.: On the appearence and structure of the Lorenz attractor. Dokl. Acad. Sci. USSR 234, 336-339 (1977)
[3] Afraimovich, V.S., Chernov, N.I., Sataev, E.A.: Statistical properties of 2-D generalized hyperbolic attractors. Chaos 5(1), 238-252 (1995) · Zbl 1055.37526 · doi:10.1063/1.166073
[4] Ambrosio, L., Gigli, N., Savaré, G.: Gradient flows in metric spaces and in the space of probability measures. Lectures in Mathematics ETH Zürich, 2nd edn. Birkhäuser Verlag, Basel (2008) · Zbl 1145.35001
[5] Anosov, D.V.: Geodesic flows on closed Riemannian manifolds of negative curvature. Proc. Steklov Math. Inst. 90, 1-235 (1967) · Zbl 0176.19101
[6] Araújo, V., Pacifico, M. J.: Three-dimensional flows, volume 53 of Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics]. Springer, Heidelberg (2010). With a foreword by Marcelo Viana · Zbl 1202.37002
[7] Araújo, V., Pujals, E.R., Pacifico, M.J., Viana, M.: Singular-hyperbolic attractors are chaotic. Trans. A.M.S. 361, 2431-2485 (2009) · Zbl 1214.37010 · doi:10.1090/S0002-9947-08-04595-9
[8] Araujo, V., Varandas, P.: Robust exponential decay of correlations for singular-flows. Commun. Math. Phys. 311, 215-246 (2012) · Zbl 1314.37010 · doi:10.1007/s00220-012-1445-8
[9] Athreya, J.S., Margulis, G.A.: Logarithm laws for unipotent flows. I. J. Mod. Dyn. 3(3), 359-378 (2009) · Zbl 1184.37007 · doi:10.3934/jmd.2009.3.359
[10] Bonatti, C., Díaz, L.J., Viana, M.: Dynamics Beyond Uniform Hyperbolicity. A Global Geometric and Probabilistic Perspective, vol. 102 of Encyclopaedia of Mathematical Sciences. Mathematical Physics, III. Springer, Berlin (2005) · Zbl 1060.37020
[11] Bonatti, C., Pumariño, A., Viana, M.: Lorenz attractors with arbitrary expanding dimension. C. R. Acad. Sci. Paris Sér. I Math. 325(8), 883-888 (1997) · Zbl 0896.58043 · doi:10.1016/S0764-4442(97)80131-0
[12] Brin, M., Pesin, Y.: Partially hyperbolic dynamical systems. Izv. Acad. Nauk. SSSR 1, 177-212 (1974) · Zbl 0304.58017
[13] Bunimovich, L. A.: Statistical properties of Lorenz attractors. In: Barenblatt, G.I. (ed.) Nonlinear Dynamics and Turbulence. Interaction of Mechanics and Mathematics Series, pp. 71-92. Pitman, Boston (1983) · Zbl 0578.58025
[14] Galatolo, S.: Dimension and hitting time in rapidly mixing systems. Math. Res. Lett. 14(5), 797-805 (2007) · Zbl 1134.37004 · doi:10.4310/MRL.2007.v14.n5.a8
[15] Galatolo, S.: Hitting time in regular sets and logarithm law for rapidly mixing dynamical systems. Proc. Am. Math. Soc. 138(7), 2477-2487 (2010) · Zbl 1217.37005 · doi:10.1090/S0002-9939-10-10275-5
[16] Galatolo, S., Kim, D.H.: The dynamical Borel-Cantelli lemma and the waiting time problems. Indag. Math. (N.S.) 18(3), 421-434 (2007) · Zbl 1134.37002 · doi:10.1016/S0019-3577(07)80031-0
[17] Galatolo, S., Nisoli, I.: Shrinking targets in fast mixing flows and the geodesic flow on negatively curved manifolds. Nonlinearity 24(11), 3099-3113 (2011) · Zbl 1248.37032 · doi:10.1088/0951-7715/24/11/005
[18] Galatolo, S., Pacifico, M.J.: Lorenz like flows: exponential decay of correlations for the poincaré map, logarithm law, quantitative recurrence. Ergod. Theory Dyn. Syst. 30, 703-1737 (2010) · Zbl 1225.37007 · doi:10.1017/S0143385709000856
[19] Galatolo, S., Peterlongo, P.: Long hitting time, slow decay of correlations and arithmetical properties. Discrete Continuous Dyn. Syst. 27(1), 185-204 (2010) · Zbl 1195.37008 · doi:10.3934/dcds.2010.27.185
[20] Gorodnik, A., Shah, N.A.: Khinchins theorem for approximation by integral points on quadratic varieties. Math. Ann. 350(2), 357-380 (2011) · Zbl 1260.11049 · doi:10.1007/s00208-010-0561-z
[21] Gourmelon, N.: Adapted metrics for dominated splittings. Ergod. Theory Dyn. Syst. 27(6), 1839-1849 (2007) · Zbl 1127.37031 · doi:10.1017/S0143385707000272
[22] Guckenheimer, J., Williams, R.F.: Structural stability of Lorenz attractors. Publ. Math. IHES 50, 59-72 (1979) · Zbl 0436.58018 · doi:10.1007/BF02684769
[23] Hartman, P.: Ordinary Differential Equations, vol. 38 of Classics in Applied Mathematics. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA (2002). Corrected reprint of the 2nd (1982) edn. [Birkhäuser, Boston, MA; MR0658490 (83e:34002)], With a foreword by Peter Bates · Zbl 0574.28014
[24] Hill, R., Velani, S.L.: The ergodic theory of shrinking targets. Invent. Math. 119(1), 175-198 (1995) · Zbl 0834.28009 · doi:10.1007/BF01245179
[25] Hirsch, M., Pugh, C., Shub, M.: Invariant manifolds, vol. 583 of Lecturer Notes in Mathematics. Springer Verlag, New York (1977) · Zbl 0355.58009
[26] Holland, M., Melbourne, I.: Central limit theorems and invariance principles for Lorenz attractors. J. Lond. Math. Soc. (2) 76(2), 345-364 (2007) · Zbl 1126.37006
[27] Ionescu-Tulcea, C.T., Marinescu, G.: Théorie ergodique pour des classes d’operations non complètement continues. Ann. Math. 52, 140-147 (1950) · Zbl 0040.06502 · doi:10.2307/1969514
[28] Keller, G.: Generalized bounded variation and applications to piecewise monotonic transformations. Z. Wahrsch. Verw. Gebiete 69(3), 461-478 (1985) · Zbl 0574.28014 · doi:10.1007/BF00532744
[29] Kim, D.H., Marmi, S.: The recurrence time for interval exchange maps. Nonlinearity 21(9), 2201-2210 (2008) · Zbl 1154.37341 · doi:10.1088/0951-7715/21/9/016
[30] Kleinbock, D.Y., Margulis, G.A.: Logarithm laws for flows on homogeneous spaces. Invent. Math. 138(3), 451-494 (1999) · Zbl 0934.22016 · doi:10.1007/s002220050350
[31] Kontoyiannis, I.: Asymptotic recurrence and waiting times for stationary processes. J. Theor. Probab. 11(3), 795-811 (1998) · Zbl 0912.60051 · doi:10.1023/A:1022610816550
[32] Lorenz, E.N.: Deterministic nonperiodic flow. J. Atmos. Sci. 20, 130-141 (1963) · Zbl 1417.37129 · doi:10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2
[33] Metzger, R., Morales, C.: Sectional-hyperbolic systems. Ergod. Theory Dyn. Syst. 28, 1587-1597 (2008) · Zbl 1165.37010 · doi:10.1017/S0143385707000995
[34] Morales, C.A., Pacifico, M.J.: A dichotomy for three-dimensional vector fields. Ergod. Theory Dyn. Syst. 23(5), 1575-1600 (2003) · Zbl 1040.37014 · doi:10.1017/S0143385702001621
[35] Morales, C.A., Pacifico, M.J., Pujals, E.R.: Robust transitive singular sets for 3-flows are partially hyperbolic attractors or repellers. Ann. Math. (2) 160(2), 375-432 (2004) · Zbl 1071.37022 · doi:10.4007/annals.2004.160.375
[36] Palis, J., de Melo, W.: Geometric Theory of Dynamical Systems. Springer, Berlin (1982) · Zbl 0491.58001 · doi:10.1007/978-1-4612-5703-5
[37] Palis, J., Takens, F.: Hyperbolicity and Sensitive-Chaotic Dynamics at Homoclinic Bifurcations. Cambridge University Press, Cambridge, MA (1993) · Zbl 0790.58014
[38] Pesin, Y.: Dynamical systems with generalized hyperbolic attractors: hyperbolic, ergodic and topological properties. Ergod. Theory Dyn. Syst. 12, 123-151 (1992) · Zbl 0774.58029 · doi:10.1017/S0143385700006635
[39] Pollicott, M.: On the rate of mixing of Axiom A flows. Invent. Math. 81(3), 413-426 (1985) · Zbl 0591.58025 · doi:10.1007/BF01388579
[40] Pugh, C., Shub, M.: Ergodicity of Anosov actions. Invent. Math. 15, 1-23 (1972) · Zbl 0236.58007 · doi:10.1007/BF01418639
[41] Pugh, C., Shub, M., Wilkinson, A.: Hölder foliations. Duke Math. J. 86, 517-546 (1997) · Zbl 0877.58045 · doi:10.1215/S0012-7094-97-08616-6
[42] Robinson, C.: Dynamical Systems: Stability, Symbolic Dynamics, and Chaos. Studies in Advanced Mathematics. CRC Press, Boca Raton, FL (1999) · Zbl 0914.58021
[43] Ruelle, D.: Flots qui ne mélangent pas exponentiellement. C. R. Acad. Sci. Paris Sér. I Math. 296(4), 191-193 (1983) · Zbl 0531.58040
[44] Shields, P.C.: Waiting times: positive and negative results on the Wyner-Ziv problem. J. Theor. Probab. 6(3), 499-519 (1993) · Zbl 0776.60082 · doi:10.1007/BF01066715
[45] Shub, M.: Global Stability of Dynamical Systems. Springer, Berlin (1987) · Zbl 0606.58003 · doi:10.1007/978-1-4757-1947-5
[46] Steinberger, T.: Local dimension of ergodic measures for two-dimensional Lorenz transformations. Ergod. Theory Dyn. Syst. 20(3), 911-923 (2000) · Zbl 0965.37011 · doi:10.1017/S0143385700000493
[47] Sullivan, D.: Disjoint spheres, approximation by imaginary quadratic numbers, and the logarithm law for geodesics. Acta Math. 149(3-4), 215-237 (1982) · Zbl 0517.58028 · doi:10.1007/BF02392354
[48] Young, L.S.: Statistical properties of dynamical systems with some hyperbolicity. Ann. Math. 147, 585-650 (1998) · Zbl 0945.37009
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.