×

Exponential decay of correlations for nonuniformly hyperbolic flows with a \(C^{1+\alpha}\) stable foliation, including the classical Lorenz attractor. (English) Zbl 1367.37033

Summary: We prove exponential decay of correlations for a class of \(C^{1+\alpha}\) uniformly hyperbolic skew product flows, subject to a uniform nonintegrability condition. In particular, this establishes exponential decay of correlations for an open set of geometric Lorenz attractors. As a special case, we show that the classical Lorenz attractor is robustly exponentially mixing.

MSC:

37D25 Nonuniformly hyperbolic systems (Lyapunov exponents, Pesin theory, etc.)
37D20 Uniformly hyperbolic systems (expanding, Anosov, Axiom A, etc.)
37D40 Dynamical systems of geometric origin and hyperbolicity (geodesic and horocycle flows, etc.)
53D25 Geodesic flows in symplectic geometry and contact geometry
37C10 Dynamics induced by flows and semiflows

Software:

RODES

References:

[1] Araújo, V., Butterley, O., Varandas, P.: Open sets of Axiom A flows with exponentially mixing attractors. Proc. Am. Math. Soc. (2016, to appear). arXiv:1402.6654. · Zbl 1359.37066
[2] Araújo V., Melbourne I., Varandas P.: Rapid mixing for the Lorenz attractor and statistical limit laws for their time-1 maps. Commun. Math. Phys 340, 901-938 (2015) · Zbl 1356.37002 · doi:10.1007/s00220-015-2471-0
[3] Araújo, V., Pacifico, M.J.: Three-dimensional flows. Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics], vol. 53. Springer, Heidelberg (2010) · Zbl 1202.37002
[4] Araújo V., Pacifico M.J., Pujals E.R., Viana M.: Singular-hyperbolic attractors are chaotic. Trans. Am. Math. Soc. 361, 2431-2485 (2009) · Zbl 1214.37010 · doi:10.1090/S0002-9947-08-04595-9
[5] Araújo, V., Varandas, P.: Robust exponential decay of correlations for singular-flows. Commun. Math. Phys. 311, 215-246 (2012). Erratum: Commun. Math. Phys. 341, 729-731 (2016) · Zbl 1314.37010
[6] Avila, A., Gouëzel, S., Yoccoz, J.: Exponential mixing for the Teichmüller flow. Publ. Math. Inst. Hautes Études Sci., 143-211 (2006) · Zbl 1263.37051
[7] Baladi V., Vallée B.: Exponential decay of correlations for surface semi-flows without finite Markov partitions. Proc. Am. Math. Soc. 133, 865-874 (2005) · Zbl 1055.37027 · doi:10.1090/S0002-9939-04-07671-3
[8] Butterley, O., Eslami, P.: Exponential mixing for skew products with discontinuities. Trans. Am. Math. Soc. (2016, to appear). arXiv:1405.7008 · Zbl 1369.37006
[9] Butterley, O., Melbourne, I.: Disintegration of invariant measures for hyperbolic skew products. Israel J. Math. (2016, to appear). arXiv:1503.04319 · Zbl 1379.37053
[10] Chernov N.I.: Markov approximations and decay of correlations for Anosov flows. Ann. Math. 147, 269-324 (1998) · Zbl 0911.58028 · doi:10.2307/121010
[11] Dolgopyat D.: On the decay of correlations in Anosov flows. Ann. Math. 147, 357-390 (1998) · Zbl 0911.58029 · doi:10.2307/121012
[12] Eslami, P.: Stretched exponential mixing for \[{C^{1+\alpha}}\] C1+α skew products with discontinuities. Ergodic Theory Dyn. Syst. (2015, to appear) · Zbl 1214.37010
[13] Hasselblatt B., Wilkinson A.: Prevalence of non-Lipschitz Anosov foliations. Ergodic Theory Dyn. Syst. 19, 643-656 (1999) · Zbl 1069.37031 · doi:10.1017/S0143385799133868
[14] Liverani C.: On contact Anosov flows. Ann. Math. 159, 1275-1312 (2004) · Zbl 1067.37031 · doi:10.4007/annals.2004.159.1275
[15] Luzzatto, S., Melbourne, I., Paccaut, F.: The Lorenz attractor is mixing. Commun. Math. Phys. 260, 393-401 (2005) · Zbl 1082.37030
[16] Morales C.A., Pacifico M.J., Pujals E.R.: Robust transitive singular sets for 3-flows are partially hyperbolic attractors or repellers. Ann. Math. 160, 375-432 (2004) · Zbl 1071.37022 · doi:10.4007/annals.2004.160.375
[17] Pollicott M.: On the rate of mixing of Axiom A flows. Invent. Math. 81, 413-426 (1985) · Zbl 0591.58025 · doi:10.1007/BF01388579
[18] Ratner M.: Bernoulli flows over maps of the interval. Israel J. Math. 31, 298-314 (1978) · Zbl 0435.58022 · doi:10.1007/BF02761496
[19] Tucker W.: A rigorous ODE solver and Smale’s 14th problem. Found. Comput. Math. 2, 53-117 (2002) · Zbl 1047.37012 · doi:10.1007/s002080010018
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.