×

Critical growth elliptic problems with Choquard type nonlinearity: a survey. (English) Zbl 1529.35290

Manchanda, Pammy (ed.) et al., Mathematical modelling, optimization, analytic and numerical solutions. Selected papers based on the presentations at the international conference in conjunction with 14th biennial conference of ISIAM, Guru Nanak Dev University, Amritsar, India, February 2–4, 2018. Singapore: Springer. Ind. Appl. Math., 197-229 (2020).
Summary: This article deals with a survey of recent developments and results on Choquard equations where we focus on the existence and multiplicity of solutions of the partial differential equations which involves the nonlinearity of the convolution type. Because of its nature, these equations are categorized under the nonlocal problems. We give a brief survey on the work already done in this regard following which we illustrate the problems we have addressed. Seeking the help of variational methods and asymptotic estimates, we prove our main results.
For the entire collection see [Zbl 1460.65004].

MSC:

35K86 Unilateral problems for nonlinear parabolic equations and variational inequalities with nonlinear parabolic operators

References:

[1] C.O. Alves, F. Gao, M. Squassina, M. Yang, Singularly perturbed critical Choquard equations. J. Differ. Equ. 263(7), 3943-3988 (2017) · Zbl 1378.35113 · doi:10.1016/j.jde.2017.05.009
[2] C.O. Alves, L.S. Tavares, A Hardy-Littlewood-Sobolev type inequality for variable exponents and applications to quasilinear Choquard equations involving variable exponent. Mediterr. J. Math. 16, 55 (2019), https://arxiv.org/pdf/1609.09558.pdf · Zbl 1414.35009
[3] C.O. Alves, M. Yang, Multiplicity and concentration of solutions for a quasilinear Choquard equation, J. Math. Phys. 55, 061502, 21 (2014) · Zbl 1293.35352 · doi:10.1063/1.4884301
[4] C.O. Alves, M. Yang, Existence of semiclassical ground state solutions for a generalized Choquard equation. J. Differ. Equ. 257, 4133-4164 (2014) · Zbl 1309.35036 · doi:10.1016/j.jde.2014.08.004
[5] C.O. Alves, M. Yang, Investigating the multiplicity and concentration behaviour of solutions for a quasi-linear Choquard equation via the penalization method. Proc. R. Soc. Edinburgh Sect. A. 146, 23-58 (2016) · Zbl 1366.35050 · doi:10.1017/S0308210515000311
[6] C.O. Alves, M. Yang, Existence of solutions for a nonlocal variational problem in \(\mathbb{R}^2\) with exponential critical growth. J. Convex Anal. 24, 1197-1215 (2017) · Zbl 1384.35024
[7] C.O. Alves, D. Cassani, C. Tarsi, M. Yang, Existence and concentration of ground state solutions for a critical nonlocal Schrödinger equation in \(\mathbb{R}^n\). J. Differ. Equ. 261, 1933-1972 (2016) · Zbl 1347.35096 · doi:10.1016/j.jde.2016.04.021
[8] C.O. Alves, M.G. Figueiredo, M. Yang, Existence of solutions for a nonlinear Choquard equation with potential vanishing at infinity. Adv. Nonlinear Anal. 5, 331-345 (2016) · Zbl 1354.35029
[9] R. Arora, J. Giacomoni, T. Mukherjee, K. Sreenadh, n-Kirchhoff Choquard equation with exponential nonlinearity. Nonlinear Anal. 186, 113-144 (2019), https://arxiv.org/pdf/1810.00583.pdf · Zbl 1418.35355
[10] A. Bahri, J.-M. Coron, On a nonlinear elliptic equation involving the critical Sobolev exponent: the effect of the topology of the domain. Commun. Pure Appl. Math. 41, 253-294 (1988) · Zbl 0649.35033 · doi:10.1002/cpa.3160410302
[11] V. Benci, C.R. Grisanti, A.M. Micheletti, Existence and non existence of the ground state solution for the nonlinear Schrödinger equations with \(V(\infty )=0\). Topol. Methods Nonlinear Anal. 26, 203-219 (2005) · Zbl 1105.35112 · doi:10.12775/TMNA.2005.031
[12] V. Benci, C.R. Grisanti, A.M. Micheletti, Existence of solutions for the nonlinear Schrödinger equation with \(V(\infty )=0\). Progr. Nonlinear Differ. Equ. Appl. 66, 53-65 (2005) · Zbl 1231.35225
[13] H. Berestycki, P.L. Lions, Nonlinear scalar field equations. I Existence of a ground state. Arch. Ration. Mech. Anal. 82, 313-346 (1983) · Zbl 0533.35029 · doi:10.1007/BF00250555
[14] H. Brézis, T. Kato, Remarks on the Schrödinger operator with singular complex potentials. J. Math. Pures Appl. 9, 137-151 (1979) · Zbl 0408.35025
[15] H. Brézis, L. Nirenberg, Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents. Commun. Pure Appl. Math. 36, 437-477 (1983) · Zbl 0541.35029 · doi:10.1002/cpa.3160360405
[16] H. Brézis, L. Nirenberg, \(H^1\) versus \(C^1\) local minimizers. C. R. Acad. Sci. Paris. 317, 465-472 (1993) · Zbl 0803.35029
[17] D. Cassani, J.V. Scahftingen, J. Zhang, Groundstates for Choquard type equations with Hardy-Littlewood-Sobolev lower critical exponent, Proceedings of the Royal Society of Edinburgh: Section A Mathematics, pp. 1-24, https://doi.org/10.1017/prm.2018.135, https://arxiv.org/pdf/1709.09448.pdf
[18] W. Chen, S. Deng, The Nehari manifold for a fractional p-Laplacian system involving concave-convex nonlinearities. Nonlinear Anal. Real World Appl. 27, 80-92 (2016) · Zbl 1330.35497 · doi:10.1016/j.nonrwa.2015.07.009
[19] W. Chen, M. Squassina, Critical Nonlocal Systems with Concave-Convex Powers. Adv. Nonlinear Stud. 16, 821-842 (2016) · Zbl 1488.35555
[20] W. Choi, On strongly indefinite systems involving the fractional Laplacian. Nonlinear Anal. 120, 127-153 (2015) · Zbl 1323.35194 · doi:10.1016/j.na.2015.03.007
[21] S. Cingolani, S. Secchi, M. Squassina, Semi-classical limit for Schrödinger equations with magnetic field and Hartree-type nonlinearities. Proc. R. Soc. Edinb. Sect. A 140, 973-1009 (2010) · Zbl 1215.35146 · doi:10.1017/S0308210509000584
[22] S. Cingolani, M. Clapp, S. Secchi, Multiple solutions to a magnetic nonlinear Choquard equation. Z. Angrew. Math. Phys. 63, 233-248 (2012) · Zbl 1247.35141 · doi:10.1007/s00033-011-0166-8
[23] S. Cingolani, M. Clapp, S. Secchi, Intertwining semiclassical solutions to a Schrödinger- Newton system. Discret. Contin. Dyn. Syst. Ser. S. 6, 891-908 (2013) · Zbl 1260.35198
[24] M.G. Crandall, P.H. Rabinowitz, L. Tartar, On a Dirichlet problem with a singular nonlinearity. Commun. Part. Differ. Equ. 2, 193-222 (1977) · Zbl 0362.35031 · doi:10.1080/03605307708820029
[25] Y. Ding, F. Gao, M. Yang, Semiclassical states for Choquard type equations with critical growth: critical frequency case. https://arxiv.org/pdf/1710.05255.pdf · Zbl 1454.35085
[26] L. Du, F. Gao, M. Yang, Existence and qualitative analysis for nonlinear weighted Choquard equations, https://arxiv.org/pdf/1810.11759.pdf
[27] L. Du, M. Yang, Uniqueness and nondegeneracy of solutions for a critical nonlocal equation. Discrete Contin. Dyn. Syst. 39(10), 5847-5866 (2019), https://arxiv.org/pdf/1810.11186.pdf · Zbl 1425.35025 · doi:10.3934/dcds.2019219
[28] L.F.O. Faria, O.H. Miyagaki, F.R. Pereira, M. Squassina, C. Zhang, The Brezis-Nirenberg problem for nonlocal systems. Adv. Nonlinear Anal. 5, 85-103 (2016) · Zbl 1343.47054
[29] F. Gao, E.D. da Silva, M. Yang, J. Zhou, Existence of solutions for critical Choquard equations via the concentration compactness method, Proceedings of the Royal Society of Edinburgh: Section A Mathematics, (2018), pp. 1-34, https://arxiv.org/abs/1712.08264, to appear in Proc. R. Soc. Edinb., A Math
[30] F. Gao, M. Yang, A strongly indefinite Choquard equation with critical exponent due to the Hardy-Littlewood-Sobolev inequality. Commun. Contemp. Math. 20(4), 1750037, (22 pages) (2018) · Zbl 1391.35126 · doi:10.1142/S0219199717500377
[31] F. Gao, M. Yang, On nonlocal Choquard equations with Hardy Littlewood Sobolev critical exponents. J. Math. Anal. Appl. 448, 1006-1041 (2017) · Zbl 1357.35106 · doi:10.1016/j.jmaa.2016.11.015
[32] F. Gao, M. Yang, On the Brezis Nirenberg type critical problem for nonlinear Choquard equation. Sci. Chi. Math. 61, 1219-1242 (2018), https://doi.org/10.1007/s11425-016-9067-5 · Zbl 1397.35087 · doi:10.1007/s11425-016-9067-5
[33] V. Georgiev, G. Venkov, Symmetry and uniqueness of minimizers of Hartree type equations with external Coulomb potential. J. Differ. Equ. 251, 420-438 (2011) · Zbl 1219.35086 · doi:10.1016/j.jde.2011.04.012
[34] M. Ghimenti, D. Pagliardini, Multiple positive solutions for a slightly subcritical Choquard problem on bounded domains. Calc. Var. Partial Dif. 58, 167 (2019), https://arxiv.org/pdf/1804.03448.pdf · Zbl 1425.35062
[35] J. Giacomoni, T. Mukherjee, K. Sreenadh, Doubly nonlocal system with Hardy-Littlewood-Sobolev critical nonlinearity. J. Math. Anal. Appl. 467, 638-672 (2018) · Zbl 1396.35068 · doi:10.1016/j.jmaa.2018.07.035
[36] Goel, D., Sreenadh, K.: Kirchhoff equations with Hardy-Littlewood-Sobolev critical nonlinearity. Nonlinear Anal. 186, 162-186 (2019) · Zbl 1421.35110 · doi:10.1016/j.na.2019.01.035
[37] D. Goel, V. Radulescu, K. Sreenadh, Coron problem for nonlocal equations involving Choquard nonlinearity. Adv. Nonlinear Stud. (2019), https://doi.org/10.1515/ans-2019-2064, https://arxiv.org/pdf/1804.08084.pdf · Zbl 1437.35234 · doi:10.1515/ans-2019-2064
[38] Z. Guo, S. Luo, W. Zou, On critical systems involving frcational Laplacian. J. Math. Anal. Appl. 446, 681-706 (2017) · Zbl 1409.35217 · doi:10.1016/j.jmaa.2016.08.069
[39] Y. Haitao, Multiplicity and asymptotic behavior of positive solutions for a singular semilinear elliptic problem. J. Differ. Equ. 189, 487-512 (2003) · Zbl 1034.35038 · doi:10.1016/S0022-0396(02)00098-0
[40] N. Hirano, C. Saccon, N. Shioji, Existence of multiple positive solutions for singular elliptic problems with concave and convex nonlinearities. Adv. Differ. Equ. 9, 197-220 (2004) · Zbl 1387.35287
[41] N. Hirano, C. Saccon, N. Shioji, Brezis-Nirenberg type theorems and multiplicity of positive solutions for a singular elliptic problem. J. Differ. Equ. 245, 1997-2037 (2008) · Zbl 1158.35044 · doi:10.1016/j.jde.2008.06.020
[42] Z. Huang, J. Yang, W. Yu, Multiple nodal solutions of nonlinear choquard equations. Electron. J. Differ. Equ. 268, 1-18 (2017) · Zbl 1386.35101
[43] Y. Lei, On the regularity of positive solutions of a class of Choquard type equations. Math. Z. 273, 883-905 (2013) · Zbl 1267.45010 · doi:10.1007/s00209-012-1036-6
[44] Y. Lei, Qualitative analysis for the static Hartree-type equations. SIAM J. Math. Anal. 45, 388-406 (2013) · Zbl 1277.45007 · doi:10.1137/120879282
[45] G.-D. Li, C.-L. Tnag, Existence of ground state solutions for Choquard equation involving the general upper critical Hardy-Littlewood-Sobolev nonlinear term. Commun. Pure Appl. Anal. 18, 285-300 (2019) · Zbl 1418.35188 · doi:10.3934/cpaa.2019015
[46] E.H. Lieb, Existence and uniqueness of the minimizing solution of Choquards nonlinear equation. Stud. Appl. Math. 57 93-105 (1976/77) · Zbl 0369.35022 · doi:10.1002/sapm197757293
[47] E.H. Lieb, M. Loss, Analysis, 2nd edn. (AMS, 2001) · Zbl 0966.26002
[48] O. Lopes, M. Maris, Symmetry of minimizers for some nonlocal variational problems. J. Funct. Anal. 254, 535-592 (2008) · Zbl 1128.49003 · doi:10.1016/j.jfa.2007.10.004
[49] D. Lü, Existence and concentration behavior of ground state solutions for magnetic nonlinear Choquard equations. Commun. Pure Appl. Anal. 15, 1781-1795 (2016) · Zbl 1351.35185 · doi:10.3934/cpaa.2016014
[50] L. Ma, L. Zhao, Classification of positive solitary solutions of the nonlinear Choquard equation. Arch. Rational Mech. Anal. 195, 455-467 (2010) · Zbl 1185.35260 · doi:10.1007/s00205-008-0208-3
[51] G.P. Menzala, On the nonexistence of solutions for an elliptic problem in unbounded domains. Funkcial. Ekvac. 26, 231-235 (1983) · Zbl 0557.35046
[52] C. Mercuri, V. Moroz, J.V. Schaftingen, Groundstates and radial solutions to nonlinear SchrödingerPoissonSlater equations at the critical frequency. J. Calc. Var. 55, 146 (2016) · Zbl 1406.35365 · doi:10.1007/s00526-016-1079-3
[53] V. Moroz, J.V. Schaftingen, Groundstates of nonlinear Choquard equations: Hardy Littlewood Sobolev critical exponent. Commun. Contemp. Math. 17, 1550005 (12 pages) (2015) · Zbl 1326.35109 · doi:10.1142/S0219199715500054
[54] V. Moroz, J.V. Schaftingen, Groundstates of nonlinear Choquard equations: existence, qualitative properties and decay asymptotics. J. Funct. Anal. 265, 153-184 (2013) · Zbl 1285.35048 · doi:10.1016/j.jfa.2013.04.007
[55] V. Moroz, J.V. Schaftingen, Existence of groundstates for a class of nonlinear Choquard equations. Trans. Am. Math. Soc. 367, 6557-6579 (2015) · Zbl 1325.35052 · doi:10.1090/S0002-9947-2014-06289-2
[56] V. Moroz, J.V. Schaftingen, Least action nodal solutions for the quadratic Choquard equation. Proc. Am. Math. Soc. 145, 737-747 (2017) · Zbl 1355.35079
[57] V. Moroz, J.V. Schaftingen, A guide to the Choquard equation. J. Fixed Point Theory Appl. 19, 773-813 (2017) · Zbl 1360.35252 · doi:10.1007/s11784-016-0373-1
[58] T. Mukherjee, K. Sreenadh, Positive solutions for nonlinear Choquard equation with singular nonlinearity. Complex Var. Elliptic Equ. 62, 1044-1071 (2017) · Zbl 1368.35275 · doi:10.1080/17476933.2016.1260559
[59] T. Mukherjee, K. Sreenadh, Fractional Choquard Equation with critical nonlinearities. Nonlinear Differ. Equ. Appl. 24, 63 (2017) · Zbl 1387.35608 · doi:10.1007/s00030-017-0487-1
[60] T. Mukherjee, K. Sreenadh, On Concentration of least energy solutions for magnetic critical Choquard equations. J. Math. Anal. Appl. 464, 402-420 (2018) · Zbl 1392.35290 · doi:10.1016/j.jmaa.2018.04.010
[61] T. Mukherjee, K. Sreenadh, On doubly nonlocal p-fractional coupled elliptic system. Topol. Methods Nonlinear Anal. 51, 609-636 (2018) · Zbl 1394.35561
[62] E.D. Nezza, G. Palatucci, E. Valdinoci, Hitchhikers guide to the fractional sobolev spaces. Bull. Sci. Math. 136, 521-573 (2012) · Zbl 1252.46023 · doi:10.1016/j.bulsci.2011.12.004
[63] S. Pekar, Untersuchung über die Elektronentheorie der Kristalle(Akademie Verlag, Berlin, 1954) · Zbl 0058.45503
[64] D. Salazar, Vortex-type solutions to a magnetic nonlinear Choquard equation. Z. Angew. Math. Phys. 66, 663-675 (2015) · Zbl 1320.35330 · doi:10.1007/s00033-014-0412-y
[65] R. Servadei, E. Valdinoci, The Brezis-Nirenberg result for the fractional laplacian. Trans. Am. Math. Soc. 367, 67-102 (2015) · Zbl 1323.35202 · doi:10.1090/S0002-9947-2014-05884-4
[66] Z. Shen, F. Gao, M. Yang, Multiple solutions for nonhomogeneous Choquard equation involving Hardy Littlewood Sobolev critical exponent. Z. Angew. Math. Phys. 68, 61 (2017) · Zbl 1375.35146 · doi:10.1007/s00033-017-0806-8
[67] Z. Shen, F. Gao, M. Yang, On critical Choquard equation with potential well. Discret. Contin. Dyn. Syst. A 38(7), 3669-3695 (2018) · Zbl 1398.35064 · doi:10.3934/dcds.2018151
[68] G. Tarantell, On nonhomogeneous elliptic equations involving critical Sobolev exponent. Ann. Inst. H. Poincaré Anal. Non Linéaire. 9, 281-304 (1992) · Zbl 0785.35046
[69] K. Wang, J. Wei, On the uniqueness of solutions of a nonlocal elliptic system. Math. Ann. 365, 105-153 (2016) · Zbl 1375.35615 · doi:10.1007/s00208-015-1271-3
[70] T. Wang, T. Yi, Uniqueness of positive solutions of the Choquard type equations. Appl. Anal. 96, 409-417 (2017) · Zbl 1360.35256 · doi:10.1080/00036811.2016.1138473
[71] J. Wang, Y. Dong, Q. He, L. Xiao, Multiple positive solutions for a coupled nonlinear Hartree type equations with perturbations. J. Math. Anal. Appl. 450, 780-794 (2017) · Zbl 1359.35055 · doi:10.1016/j.jmaa.2017.01.059
[72] T. Xie, L. Xiao, J. Wang, Exixtence of multiple positive solutions for Choquard equation with perturbation. Adv. Math. Phys. 2015, 760157 (2015) · Zbl 1375.35220 · doi:10.1155/2015/760157
[73] M. Yang, Semiclassical ground state solutions for a Choquard type equation in \(R^2\) with critical exponential growth. ESAIM: Control., Optim. Calc. Var. 24, 177-209 (2018) · Zbl 1400.35086
[74] H. Zhang, J. Xu, F. Zhang, Existence and multiplicity of solutions for a generalized Choquard equation. Comput. Math. Appl · Zbl 1375.35134 · doi:10.1016/j.camwa.2017.02.026
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.