×

Groundstates and radial solutions to nonlinear Schrödinger-Poisson-Slater equations at the critical frequency. (English) Zbl 1406.35365

Summary: We study the nonlocal Schrödinger-Poisson-Slater type equation \[ - \Delta u + (I_\alpha *| u| ^p)| u| ^{p - 2} u= | u| ^{q-2}u\quad \text{in}\;\mathbb {R}^N, \] where \(N\in \mathbb {N}\), \(p>1\), \(q>1\) and \(I_\alpha\) is the Riesz potential of order \(\alpha \in (0,N).\) We introduce and study the Coulomb-Sobolev function space which is natural for the energy functional of the problem and we establish a family of associated optimal interpolation inequalities. We prove existence of optimizers for the inequalities, which implies the existence of solutions to the equation for a certain range of the parameters. We also study regularity and some qualitative properties of solutions. Finally, we derive radial Strauss type estimates and use them to prove the existence of radial solutions to the equation in a range of parameters which is in general wider than the range of existence parameters obtained via interpolation inequalities.

MSC:

35Q55 NLS equations (nonlinear Schrödinger equations)
35J91 Semilinear elliptic equations with Laplacian, bi-Laplacian or poly-Laplacian
35J47 Second-order elliptic systems
35J50 Variational methods for elliptic systems
31B35 Connections of harmonic functions with differential equations in higher dimensions
35B65 Smoothness and regularity of solutions to PDEs

References:

[1] Ackermann, N.: On a periodic Schrödinger equation with nonlocal superlinear part. Math Z. 248, 423-443 (2004) · Zbl 1059.35037
[2] Ackermann, N.: A nonlinear superposition principle and multibump solutions of periodic Schrödinger equations. J. Funct. Anal. 234, 277-320 (2006) · Zbl 1126.35057
[3] Adams, D.R., Hedberg, L.I.: Function spaces and potential theory. Grundlehren der Mathematischen Wissenschaften. 314, Springer (1996) · Zbl 0834.46021
[4] Ambrosetti, A.: On Schrödinger-Poisson systems. Milan J. Math. 76, 257-274 (2008) · Zbl 1181.35257
[5] Ambrosetti, A., Rabinowitz, P.H.: Dual variational methods in critical point theory and applications. J. Funct. Anal. 14, 349-381 (1973) · Zbl 0273.49063
[6] Bao, W., Mauser, N.J., Stimming, H.P.: Effective one particle quantum dynamics of electrons: a numerical study of the Schrödinger-Poisson-\[X\alpha\] Xα model. Commun. Math. Sci. 1(4), 809-828 (2003) · Zbl 1160.81497
[7] Bellazzini, J., Frank, R.L., Visciglia, N.: Maximizers for Gagliardo-Nirenberg inequalities and related non-local problems. Math. Ann. 360(3-4), 653-673 (2014) · Zbl 1320.46026
[8] Bellazzini, J., Ghimenti, M., Ozawa, T.: Sharp lower bounds for Coulomb energy. Math. Res. Lett. 23(3), 621-632 (2016) · Zbl 1354.31006
[9] Benci, V., Fortunato, D.: An eigenvalue problem for the Schrödinger-Maxwell equations. Topol. Methods Nonlinear Anal. 11(2), 283-293 (1998) · Zbl 0926.35125
[10] Benedek, A., Panzone, R.: The space \[L^P\] LP, with mixed norm. Duke Math. J. 28, 301-324 (1961) · Zbl 0107.08902
[11] Boas, R.P., Jr.: Some uniformly convex spaces. Bull. Am. Math. Soc. 46, 304-311 (1940) · Zbl 0024.41304
[12] Bogachev, V.I.: Measure theory. Springer, Berlin (2007) · Zbl 1120.28001
[13] Bokanowski, O., López, J.L., Soler, J.: On an exchange interaction model for quantum transport: the Schrödinger-Poisson-Slater system. Math. Models Methods Appl. Sci. 13(10), 1397-1412 (2003) · Zbl 1073.35188
[14] Bonheure, D., Mercuri, C.: Embedding theorems and existence results for nonlinear Schrödinger-Poisson systems with unbounded and vanishing potentials. J. Differ. Equ. 251(4-5), 1056-1085 (2011) · Zbl 1223.35130
[15] Brezis, H.: Functional analysis, Sobolev spaces and partial differential equations, Universitext. Springer, New York (2011) · Zbl 1220.46002
[16] Brezis, H., Lieb, E.: A relation between pointwise convergence of functions and convergence of functionals. Proc. Am. Math. Soc. 88(3), 486-490 (1983) · Zbl 0526.46037
[17] Carleson, L.: Selected problems on exceptional sets. Van Nostrand Mathematical Studies, No. 13. Van Nostrand, Princeton, Toronto, London (1967) · Zbl 0189.10903
[18] Catto, I., Dolbeault, J., Sánchez, O., Soler, J.: Existence of steady states for the Maxwell-Schrödinger-Poisson system: exploring the applicability of the concentration-compactness principle. Math. Models Methods Appl. Sci. 23(10), 1915-1938 (2013) · Zbl 1283.35117
[19] D’Aprile, T., Mugnai, D.: Solitary waves for nonlinear Klein-Gordon-Maxwell and Schrödinger-Maxwell equations. Proc. Roy. Soc. Edinburgh Sect. A. 134(5), 893-906 (2004) · Zbl 1064.35182
[20] Day, M.M.: Some more uniformly convex spaces. Bull. Am. Math. Soc. 47, 504-507 (1941) · JFM 67.0402.03
[21] Del Pino, M., Dolbeault, J.: Best constants for Gagliardo-Nirenberg inequalities and applications to nonlinear diffusions. J. Math. Pures Appl. 81(9), 847-875 (2002) · Zbl 1112.35310
[22] Di Cosmo, J., Van Schaftingen, J.: Semiclassical stationary states for nonlinear Schrödinger equations under a strong external magnetic field. J. Differ. Equ. 259, 596-627 (2015) · Zbl 1315.35200
[23] Duoandikoetxea, J.: Fractional integrals on radial functions with applications to weighted inequalities. Ann. Mat. Pura Appl. 192(4), 553-568 (2013) · Zbl 1279.47073
[24] Gagliardo, E.: Proprietà di alcune classi di funzioni in più variabili. Ricerche Mat. 7, 102-137 (1958) · Zbl 0089.09401
[25] Gilbarg, D., Trudinger, N.S.: Elliptic partial differential equations of second order. Grundlehren der Mathematischen Wissenschaften, vol. 224. Springer, Berlin (1983) · Zbl 0562.35001
[26] Fröhlich, J., Lieb, E.H., Loss, M.: Stability of Coulomb systems with magnetic fields. I. The one-electron atom. Comm. Math. Phys. 104(2), 251-270 (1986) · Zbl 0595.35098
[27] Ianni, I., Ruiz, D.: Ground and bound states for a static Schrödinger-Poisson-Slater problem. Commun. Contemp. Math. 14(1), 1250003, 22 (2012) · Zbl 1237.35146
[28] Koskela, M.: Some generalizations of Clarkson’s inequalities. Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. Fiz., pp. 634-677, pp. 89-93 (1979) · Zbl 0477.46029
[29] Lebedev, N.N.: Special functions and their applications, translated by Silverman RA. Prentice-Hall, Englewood Cliffs (1965) · Zbl 0131.07002
[30] Le Bris, C., Lions, P.L.: From atoms to crystals: a mathematical journey. Bull. Am. Math. Soc. (N.S.). 42(3), 291-363 (2005) · Zbl 1136.81371
[31] Lieb, E.H.: Sharp constants in the Hardy-Littlewood-Sobolev and related inequalities. Ann. Math. (118), 349-374 (1983) · Zbl 0527.42011
[32] Lieb, E.H., Loss, M.: Analysis, 2nd edn. Graduate Studies in Mathematics, vol. 14. American Mathematical Society, Providence, RI (2001) · Zbl 0966.26002
[33] Lions, P.L.: Some remarks on Hartree equation. Nonlinear Anal. 5(11), 1245-1256 (1981) · Zbl 0472.35074
[34] Lions, P.-L.: The concentration-compactness principle in the calculus of variations. The locally compact case. I. Ann. Inst. H. Poincaré Anal. Non Linéaire. 1(2), 109-145 (1984) · Zbl 0541.49009
[35] Lions, P.-L.: Solutions of Hartree-Fock equations for Coulomb systems. Comm. Math. Phys. 109(1), 33-97 (1987) · Zbl 0618.35111
[36] Maligranda, L., Sabourova, N.: On Clarkson’s inequality in the real case. Math. Nachr. 280(12), 1363-1375 (2007) · Zbl 1134.26008
[37] Mauser, N.J.: The Schrödinger-Poisson-\[X\alpha\] Xα equation. Appl. Math. Lett. 14(6), 759-763 (2001) · Zbl 0990.81024
[38] Maźya, V.: Sobolev spaces with applications to elliptic partial differential equations, 2nd edn. Grundlehren der Mathematischen Wissenschaften, vol. 342. Springer, Heidelberg (2011) · Zbl 1217.46002
[39] Mercuri, C.: Positive solutions of nonlinear Schrod̈inger-Poisson systems with radial potentials vanishing at infinity. Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl. 19(3), 211-227 (2008) · Zbl 1200.35098
[40] Merle, F., Peletier, L.A.: Asymptotic behaviour of positive solutions of elliptic equations with critical and supercritical growth. II. The nonradial case. J. Funct. Anal. 105(1), 1-41 (1992) · Zbl 0771.35008
[41] Milman, D.: On some criteria for the regularity of spaces of type (B). C. R. (Doklady) Acad. Sci. U.R.S.S. 20, 243-246 (1938) · Zbl 0019.41601
[42] Moroz, Van Schaftingen, J.: Groundstates of nonlinear Choquard equations: existence, qualitative properties and decay asymptotics. J. Funct. Anal. 265(2), 153-184 (2013) · Zbl 1285.35048
[43] Ni, W.-M.: A nonlinear Dirichlet problem on the unit ball and its applications. Indiana Univ. Math. J. 31, 801-807 (1982) · Zbl 0515.35033
[44] Nirenberg, L.: On elliptic partial differential equations. Ann. Scuola Norm. Sup. Pisa. 13(3), 115-162 (1959) · Zbl 0088.07601
[45] Ohtsuka, M.: Capacité d’ensembles de Cantor généralisés. Nagoya Math. J. 11, 151-160 (1957) · Zbl 0091.27501
[46] du Plessis, N.: An introduction to potential theory. University Mathematical Monographs, vol. 7. Oliver and Boyd, Edinburgh (1970) · Zbl 0208.13604
[47] Rubin, B.S.: One-dimensional representation, inversion and certain properties of Riesz potentials of radial functions. Mat. Zametki. 34(4), 521-533 (1983) · Zbl 0535.45008
[48] Ruiz, D.: The Schröinger-Poisson equation under the effect of a nonlinear local term . J. Funct. Anal. 237(2), 655-674 (2006) · Zbl 1136.35037
[49] Ruiz, D.: On the Schrödinger-Poisson-Slater system: behavior of minimizers, radial and nonradial cases. Arch. Ration. Mech. Anal. 198(1), 349-368 (2010) · Zbl 1235.35232
[50] Slater, J.: A Simplification of the Hartree-Fock Method. Phys. Rev. 81, 385-390 (1951) · Zbl 0042.23202
[51] Stein, E.M.: Singular integrals and differentiability properties of functions. Princeton Mathematical Series, vl. 30. Princeton University Press, Princeton (1970) · Zbl 0207.13501
[52] Strauss, W.A.: Existence of solitary waves in higher dimensions. Comm. Math. Phys. 55, 149-162 (1977) · Zbl 0356.35028
[53] Su, J., Wang, Z.-Q., Willem, M.: Nonlinear Schrödinger equations with unbounded and decaying radial potentials. Commun. Contemp. Math. 9(4), 571-583 (2007) · Zbl 1141.35056
[54] Su, J., Wang, Z.-Q., Willem, M.: Weighted Sobolev embedding with unbounded and decaying radial potentials. J. Differ. Equ. 238(1), 201-219 (2007) · Zbl 1220.35026
[55] Thim, J.: Asymptotics and inversion of Riesz potentials through decomposition in radial and spherical parts. Ann. Mat. Pura Appl (4). 195(2), 323-341 (2016) · Zbl 1334.47050
[56] Trudinger, N.S.: Linear elliptic operators with measurable coefficients. Ann. Scuola Norm. Sup. Pisa. 27(3), 265-308 (1973) · Zbl 0279.35025
[57] Van Schaftingen, J.: Interpolation inequalities between Sobolev and Morrey-Campanato spaces, A common gateway to concentration-compactness and Gagliardo-Nirenberg. Port. Math. 71(3-4), 159-175 (2014) · Zbl 1326.46032
[58] Willem, M.: Minimax theorems. In: Progress in Nonlinear Differential Equations and their Applications, 24. Birkhäuser Boston Inc., Boston, MA (1996) · Zbl 0856.49001
[59] Willem, M., Functional analysis: fundamentals and applications. Cornerstones, vol. XIV. Birkhäuser, Basel (2013) · Zbl 1284.46001
[60] Yang, M., Wei, Y.: Existence and multiplicity of solutions for nonlinear Schrödinger equations with magnetic field and Hartree type nonlinearities. J. Math. Anal. Appl. 403(2), 680-694 (2013) · Zbl 1294.35149
[61] Yosida, K.: Functional analysis, 6th edn. Grundlehren der Mathematischen Wissenschaften, vol. 123. Springer, Berlin, New York (1980) · Zbl 0435.46002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.