×

Kirchhoff equations with Hardy-Littlewood-Sobolev critical nonlinearity. (English) Zbl 1421.35110

Summary: We consider the following Kirchhoff-Choquard equation \[- M(\| \nabla u \|_{L^2}^2) \Delta u = \lambda f(x) | u |^{q - 2} u + \left(\int_\Omega \frac{| u(y) |^{2_\mu^\ast}}{| x - y |^\mu} d y\right) | u |^{2_\mu^\ast - 2} u \quad\text{in } \Omega,\quad u = 0 \quad\text{on } \partial \Omega,\] where \(\Omega\) is a bounded domain in \(\mathbb{R}^N(N \geq 3)\) with \(C^2\) boundary, \(2_\mu^\ast = \frac{2 N - \mu}{N - 2}\), \(1 < q \leq 2\), and \(f\) is a continuous real valued sign changing function. When \(1 < q < 2\), using the method of Nehari manifold and Concentration-compactness Lemma, we prove the existence and multiplicity of positive solutions of the above problem. We also prove the existence of a positive solution when \(q = 2\) using the Mountain Pass Lemma.

MSC:

35J60 Nonlinear elliptic equations
35J25 Boundary value problems for second-order elliptic equations
35A15 Variational methods applied to PDEs
35B09 Positive solutions to PDEs

References:

[1] Alves, C. O.; Corrêa, F. J.; Figueiredo, G. M., On a class of nonlocal elliptic problems with critical growth, Differ. Equ. Appl., 2, 3, 409-417 (2010) · Zbl 1198.35281
[2] Brezis, H.; Nirenberg, L., A minimization problem with critical exponent and nonzero data symmetry in nature, Scuola Norm. Sup. Pisa, 1, 129-140 (1989) · Zbl 0763.46023
[3] Chen, C. Y.; Kuo, Y. C.; Wu, T. F., The Nehari manifold for a Kirchhoff type problem involving sign-changing weight functions, J. Differential Equations, 250, 1876-1908 (2011) · Zbl 1214.35077
[4] Drabek, P.; Pohozaev, S. I., Positive solutions for the p-Laplacian: application of the fibering method, Proc. R. Soc. Edinburgh A, 127, 703-726 (1997) · Zbl 0880.35045
[5] Ekeland, I., On the variational principle, J. Math. Anal. Appl., 17, 324-353 (1974) · Zbl 0286.49015
[6] Figueiredo, G. M., Existence of a positive solution for a Kirchhoff problem type with critical growth via truncation argument, J. Math. Anal. Appl., 401, 2, 706-713 (2013) · Zbl 1307.35110
[7] Figueiredo, G. M.; Junior, J. R., Multiplicity of solutions for a Kirchhoff equation with subcritical or critical growth, Differential Integral Equations, 25, 9/10, 853-868 (2012) · Zbl 1274.35087
[8] Fiscella, A.; Valdinoci, E., A critical Kirchhoff type problem involving a nonlocal operator, Nonlinear Anal. TMA, 94, 156-170 (2014) · Zbl 1283.35156
[9] F. Gao, E.D. da Silva, M. Yang, J. Zhou, Existence of solutions for critical Choquard equations via the concentration compactness method, preprint; arXiv:1712.08264.2017; F. Gao, E.D. da Silva, M. Yang, J. Zhou, Existence of solutions for critical Choquard equations via the concentration compactness method, preprint; arXiv:1712.08264.2017
[10] Gao, F.; Yang, M., On nonlocal Choquard equations with Hardy-Littlewood-Sobolev critical exponents, 448, 2, 1006-1041 (2017) · Zbl 1357.35106
[11] Gao, F.; Yang, M., On the Brezis-Nirenberg type critical problem for nonlinear Choquard equation, Sci. China Math., 61, 7, 1219-1242 (2018) · Zbl 1397.35087
[12] Giacomoni, J.; Mukherjee, T.; Sreenadh, K., Doubly nonlocal system with Hardy-Littlewood-Sobolev critical nonlinearity, J. Math. Anal. Appl., 467, 638-672 (2018) · Zbl 1396.35068
[13] Kirchhoff, G., Mechanik (1883), Teubner: Teubner Leipzig · JFM 08.0542.01
[14] Lei, C. Y.; Liu, G. S.; Guo, L. T., Multiple positive solutions for a Kirchhoff type problem with a critical nonlinearity, Nonlinear Anal. RWA, 31, 343-355 (2016) · Zbl 1339.35102
[15] Li, F.; Gao, C.; Zhu, X., Existence and concentration of sign-changing solutions to Kirchhoff-type system with hartree-type nonlinearity, J. Math. Anal. Appl., 448, 1, 60-80 (2017) · Zbl 1357.35101
[16] Lieb, E. H., Existence and uniqueness of the minimizing solution of Choquard’s nonlinear equation, Stud. Appl. Math., 57, 2, 93-105 (1976) · Zbl 0369.35022
[17] Lieb, E. H.; Loss, M., Analysis, Graduate Studies in Mathematics (2001), American Mathematical Society: American Mathematical Society Providence, RI · Zbl 0966.26002
[18] Lü, D., A note on Kirchhoff-type equations with Hartree-type nonlinearities, Nonlinear Anal. TMA, 99, 35-48 (2014) · Zbl 1286.35108
[19] Mishra, P. K.; Sreenadh, K., Fractional p-Kirchhoff system with sign changing nonlinearities, Rev. R. Acad. Cienc. Exactas Fis. Nat. Madr., 111, 1, 281-296 (2017) · Zbl 1357.35286
[20] Moroz, V.; Van Schaftingen, J., Groundstates of nonlinear Choquard equations: existence, qualitative properties and decay asymptotics, J. Funct. Anal., 265, 2, 153-184 (2013) · Zbl 1285.35048
[21] Moroz, V.; Van Schaftingen, J., Existence of groundstates for a class of nonlinear Choquard equations, Trans. Amer. Math. Soc., 367, 6557-6579 (2015) · Zbl 1325.35052
[22] Moroz, V.; Van Schaftingen, J., Groundstates of nonlinear Choquard equations hardy-littlewood-Sobolev critical exponent, Commun. Contemp. Math., 17 (2015), 1550005 · Zbl 1326.35109
[23] Moroz, V.; Van Schaftingen, J., A guide to the Choquard equation, J. Fixed Point Theory Appl., 19, 1, 773-813 (2017) · Zbl 1360.35252
[24] T. Mukherjee, K. Sreenadh, Critical growth elliptic problems with Choquard type nonlinearity, Preprint: arXiv:1811.04353; T. Mukherjee, K. Sreenadh, Critical growth elliptic problems with Choquard type nonlinearity, Preprint: arXiv:1811.04353 · Zbl 1387.35608
[25] J. M. do Ó, X. He, P.K. Mishra, Fractional Kirchhoff problem with critical indefinite nonlinearity, arXiv:1607.01200; J. M. do Ó, X. He, P.K. Mishra, Fractional Kirchhoff problem with critical indefinite nonlinearity, arXiv:1607.01200 · Zbl 1412.35368
[26] Pekar, S., Untersuchung über die Elektronentheorie der Kristalle (1954), Akademie Verlag: Akademie Verlag Berlin · Zbl 0058.45503
[27] Pucci, P.; Xiang, M.; Zhang, B., Existence results for Schrodinger̈-Choquard-Kirchhoff equations involving the fractional p-Laplacian, Adv. Calc. Var. (2017)
[28] Struwe, M., Variational Methods (1990), Springer: Springer New York · Zbl 0746.49010
[29] Tarantello, G., On nonhomogeneous elliptic equations involving critical Sobolev exponent, Ann. Inst. Henri Poincare (C) Non Linear Anal., 9, 3, 281-304 (1992) · Zbl 0785.35046
[30] Willem, M., Minimax Theorems (1996), Birkhäuser: Birkhäuser Boston, MA · Zbl 0856.49001
[31] Wu, T. F., On semilinear elliptic equations involving critical Sobolev expoenents and sign-changing weight function, Commun. Pure Appl. Anal., 7, 383-405 (2008) · Zbl 1156.35046
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.