×

Sparse polynomial chaos expansions for uncertainty quantification in thermal tomography. (English) Zbl 1528.94010

Summary: This contribution presents the identification strategy of thermal parameters relying solely on data measured on boundaries – thermal tomography. The idea is to obtain crucial information about the thermal properties inside the domain under consideration while keeping the test sample intact. Such methodology perfectly fits into historic preservation where it is of particular interest to perform only non-destructive surface measurements. We propose an advanced, accelerated, and reliable inverse solver for thermal tomography problems. Here, Bayesian inference is addressed as a method, where unknown parameters are modeled as random variables regularizing the inverse problem. The obtained results are probability distributions – posterior distributions – summarizing all available information and any remaining uncertainty in the values of thermal parameters. Novelties of our approach consist in the combination of (i) formulation of parameter identification in a probabilistic setting, and (ii) use of the surrogate models based on the sparse polynomial chaos expansion. This new sparse formulation significantly reduces the total number of polynomial terms and represents the main achievement of this paper.

MSC:

94A08 Image processing (compression, reconstruction, etc.) in information and communication theory
65C20 Probabilistic models, generic numerical methods in probability and statistics

Software:

nwSpGr; BayesDA
Full Text: DOI

References:

[1] Jones, M.; Tezuka, A.; Yamada, Y., Thermal tomographic detection of inhomogeneities, J. Heat Transfer, 117, 4, 969-975 (1995)
[2] Huang, C.-H.; Chin, S.-C., A two-dimensional inverse problem in imaging the thermal conductivity of a non-homogeneous medium, Int. J. Heat Mass Transfer, 43, 22, 4061-4071 (2000) · Zbl 0973.80005
[3] Bakirov, V.; Kline, R.; Winfree, W., Multiparameter thermal tomography, (AIP Conference Proceedings, Volume 700, Number 1 (2004), AIP), 461-468
[4] Kolehmainen, V.; Kaipio, J.; Orlande, H., Reconstruction of thermal conductivity and heat capacity using a tomographic approach, Int. J. Heat Mass Transfer, 50, 25-26, 5150-5160 (2007) · Zbl 1140.80395
[5] Toivanen, J.; Kolehmainen, V.; Tarvainen, T.; Orlande, H.; Kaipio, J., Simultaneous estimation of spatially distributed thermal conductivity, heat capacity and surface heat transfer coefficient in thermal tomography, Int. J. Heat Mass Transfer, 55, 25-26, 7958-7968 (2012)
[6] Havelka, J.; Kučerová, A.; Sýkora, J., Dimensionality reduction in thermal tomography, Comput. Math. Appl., 78, 9, 3077-3089 (2019) · Zbl 1443.80017
[7] Khatoon, S.; Phirani, J.; Bahga, S. S., Fast Bayesian inference for inverse heat conduction problem using polynomial chaos and Karhunen-Loeve expansions, Appl. Therm. Eng., 219, Article 119616 pp. (2023)
[8] Wang, J.; Zabaras, N., A Bayesian inference approach to the inverse heat conduction problem, Int. J. Heat Mass Transfer, 47, 17-18, 3927-3941 (2004) · Zbl 1070.80002
[9] Marzouk, Y. M.; Najm, H. N.; Rahn, L. A., Stochastic spectral methods for efficient Bayesian solution of inverse problems, J. Comput. Phys., 224, 2, 560-586 (2007) · Zbl 1120.65306
[10] Marzouk, Y. M.; Najm, H. N., Dimensionality reduction and polynomial chaos acceleration of Bayesian inference in inverse problems, J. Comput. Phys., 228, 6, 1862-1902 (2009) · Zbl 1161.65308
[11] Xiu, D.; Karniadakis, G. E., The Wiener-Askey polynomial chaos for stochastic differential equations, SIAM J. Sci. Comput., 24, 2, 619-644 (2002) · Zbl 1014.65004
[12] Rosić, B. V.; Kučerová, A.; Sýkora, J.; Pajonk, O.; Litvinenko, A.; Matthies, H. G., Parameter identification in a probabilistic setting, Eng. Struct., 50, 179-196 (2013)
[13] Havelka, J.; Sýkora, J., Application of Calderón’s inverse problem in civil engineering, Appl. Math., 63, 6, 687-712 (2018) · Zbl 1513.65338
[14] Khatoon, S.; Phirani, J.; Bahga, S. S., Accelerated Bayesian inference-based history matching of petroleum reservoirs using polynomial chaos expansions, Inverse Probl. Sci. Eng., 29, 13, 3086-3116 (2021) · Zbl 07484749
[15] Han, Q.; Ni, P.; Du, X.; Zhou, H.; Cheng, X., Computationally efficient Bayesian inference for probabilistic model updating with polynomial chaos and Gibbs sampling, Struct. Control Health Monit., 29, 6, Article e2936 pp. (2022)
[16] Ghanem, R. G.; Spanos, P. D., Stochastic Finite Elements: A Spectral Approach (2012), Dover Publications, Revised edition
[17] Matthies, H. G., Encyclopedia of Computational Mechanics, chapter Uncertainty Quantification with Stochastic Finite Elements (2007), John Wiley & Sons, Ltd.
[18] Babuška, I.; Tempone, R.; Zouraris, G. E., Galerkin finite element approximations of stochastic elliptic partial differential equations, SIAM J. Numer. Anal., 42, 2, 800-825 (2004) · Zbl 1080.65003
[19] Babuška, I.; Nobile, F.; Tempone, R., A stochastic collocation method for elliptic partial differential equations with random input data, SIAM J. Numer. Anal., 45, 3, 1005-1034 (2007) · Zbl 1151.65008
[20] Xiu, D., Fast numerical methods for stochastic computations: A review, Commun. Comput. Phys., 5, 2-4, 242-272 (2009) · Zbl 1364.65019
[21] Blatman, G.; Sudret, B., Sparse polynomial chaos expansions and adaptive stochastic finite elements using a regression approach, C. R. Méc., 336, 6, 518-523 (2008) · Zbl 1138.74046
[22] Blatman, G.; Sudret, B., Adaptive sparse polynomial chaos expansion based on least angle regression, J. Comput. Phys., 230, 6, 2345-2367 (2011) · Zbl 1210.65019
[23] Heiss, F.; Winschel, V., Likelihood approximation by numerical integration on sparse grids, J. Econometrics, 144, 1, 62-80 (2008) · Zbl 1418.62466
[24] Stein, M., Large sample properties of simulations using latin hypercube sampling, Technometrics, 29, 2, 143-151 (1987) · Zbl 0627.62010
[25] Matthies, H. G.; Keese, A., Galerkin methods for linear and nonlinear elliptic stochastic partial differential equations, Comput. Methods Appl. Mech. Engrg., 194, 12-16, 1295-1331 (2005) · Zbl 1088.65002
[26] Howell, J. R., Application of Monte Carlo to heat transfer problems, (Advances in Heat Transfer, Volume 5 (1969), Elsevier), 1-54
[27] Gelman, A.; Carlin, J.; Stern, H. S.; Dunson, D.; Vehtari, A.; Rubin, D., Bayesian Data Analysis (2013), Chapman and Hall/CRC
[28] Xiu, D.; Hesthaven, J. S., High-order collocation methods for differential equations with random inputs, SIAM J. Sci. Comput., 27, 3, 1118-1139 (2005) · Zbl 1091.65006
[29] Havelka, J.; Kučerová, A.; Sýkora, J., Efficient inverse solvers for thermal tomography, Comput. Math. Appl., 97, 314-328 (2021) · Zbl 1524.35751
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.