×

Adaptive sparse polynomial chaos expansion based on least angle regression. (English) Zbl 1210.65019

Summary: Polynomial chaos (PC) expansions are used in stochastic finite element analysis to represent the random model response by a set of coefficients in a suitable (so-called polynomial chaos) basis. The number of terms to be computed grows dramatically with the size of the input random vector, which makes the computational cost of classical solution schemes (may it be intrusive (i.e. of Galerkin type) or non intrusive) unaffordable when the deterministic finite element model is expensive to evaluate.
To address such problems, the paper describes a non intrusive method that builds a sparse PC expansion. First, an original strategy for truncating the PC expansions, based on hyperbolic index sets, is proposed. Then an adaptive algorithm based on least angle regression (LAR) is devised for automatically detecting the significant coefficients of the PC expansion. Beside the sparsity of the basis, the experimental design used at each step of the algorithm is systematically complemented in order to avoid the overfitting phenomenon. The accuracy of the PC metamodel is checked using an estimate inspired by statistical learning theory, namely the corrected leave-one-out error. As a consequence, a rather small number of PC terms are eventually retained (sparse representation), which may be obtained at a reduced computational cost compared to the classical “full” PC approximation. The convergence of the algorithm is shown on an analytical function. Then the method is illustrated on three stochastic finite element problems. The first model features 10 input random variables, whereas the two others involve an input random field, which is discretized into 38 and 30 - 500 random variables, respectively.

MSC:

65C60 Computational problems in statistics (MSC2010)
62J02 General nonlinear regression
65P20 Numerical chaos
62L05 Sequential statistical design

Software:

FERUM
Full Text: DOI

References:

[1] Ghanem, R.; Spanos, P., Stochastic Finite Elements: A Spectral Approach (2003), Courier Dover Publications
[2] Soize, C.; Ghanem, R., Physical systems with random uncertainties: chaos representations with arbitrary probability measure, SIAM J. Sci. Comput., 26, 2, 395-410 (2004) · Zbl 1075.60084
[3] Sudret, B.; Berveiller, M.; Lemaire, M., Eléments finis stochastiques en élasticité linéaire, C. R. Mécanique, 332, 531-537 (2004) · Zbl 1223.74042
[4] Le Maıˆtre, O. P.; Knio, O. M.; Najm, H. N.; Ghanem, R. G., Uncertainty propagation using Wiener-Haar expansions, J. Comput. Phys., 197, 28-57 (2004) · Zbl 1052.65114
[5] Matthies, H. G.; Keese, A., Galerkin methods for linear and nonlinear elliptic stochastic partial differential equations, Comput. Methods Appl. Mech. Eng., 194, 1295-1331 (2005) · Zbl 1088.65002
[6] Nouy, A., A generalized spectral decomposition technique to solve stochastic partial differential equations, Comput. Methods Appl. Mech. Eng., 196, 45-48, 4521-4537 (2007) · Zbl 1173.80311
[7] Ghiocel, D. M.; Ghanem, R. G., Stochastic finite element analysis of seismic soil-structure interaction, J. Eng. Mech., 128, 66-77 (2002)
[8] Le Maıˆtre, O. P.; Reagan, M.; Najm, H. N.; Ghanem, R. G.; Knio, O. M., A stochastic projection method for fluid flow - II. Random process, J. Comput. Phys., 181, 9-44 (2002) · Zbl 1052.76057
[9] Choi, S. K.; V Grandhi, R.; Canfield, R. A.; Pettit, C. L., Polynomial chaos expansion with Latin Hypercube sampling for estimating response variability, AIAA J., 45, 1191-1198 (2004)
[10] Berveiller, M.; Sudret, B.; Lemaire, M., Non linear non intrusive stochastic finite element method – application to a fracture mechanics problem, (Augusti, G.; Schuëller, G. I.; Ciampoli, M., Proceedings of the 9th International Conference on Structure, Safety and Reliability (ICOSSAR’2005), Roma, Italy (2005), Mill Press: Mill Press Rotterdam)
[11] Berveiller, M.; Sudret, B.; Lemaire, M., Stochastic finite elements: a non intrusive approach by regression, Eur. J. Comput. Mech., 15, 1-3, 81-92 (2006) · Zbl 1325.74171
[12] Sudret, B., Global sensitivity analysis using polynomial chaos expansions, Reliab. Eng. Syst. Safe., 93, 964-979 (2008)
[13] M.S. Eldred, Recent advances in non-intrusive polynomial chaos and stochastic collocation methods for uncertainty analysis and design, in: 50th AIAA/ASME/ASCE/AHS/ASSC Structures, Structural Dynamics, and Material Conference, Palm Springs, California, 2009.; M.S. Eldred, Recent advances in non-intrusive polynomial chaos and stochastic collocation methods for uncertainty analysis and design, in: 50th AIAA/ASME/ASCE/AHS/ASSC Structures, Structural Dynamics, and Material Conference, Palm Springs, California, 2009.
[14] Xiu, D.; Hesthaven, J. S., High-order collocation methods for differential equations with random inputs, SIAM J. Sci. Comput., 27, 3, 1118-1139 (2005) · Zbl 1091.65006
[15] Babus˘ka, I.; Nobile, F.; Tempone, R., A stochastic collocation method for elliptic partial differential equations with random input data, SIAM J. Numer. Anal., 45, 3, 1005-1034 (2007) · Zbl 1151.65008
[16] Gerstner, T.; Griebel, M., Dimension-adaptive tensor-product quadrature, Computing, 71, 65-87 (2003) · Zbl 1030.65015
[17] Ganapathysubramanian, B.; Zabaras, N., Sparse grid collocation schemes for stochastic natural convection problems, J. Comput. Phys., 225, 652-685 (2007) · Zbl 1343.76059
[18] Nair, P. B.; Keane, A. J., Stochastic reduced basis methods, AIAA J., 40, 1653-1664 (2002)
[19] Sachdeva, S. K.; Nair, P. B.; Keane, A. J., Hybridization of stochastic reduced basis methods with polynomial chaos expansions, Probabilist. Eng. Mech., 21, 2, 182-192 (2006)
[20] Nouy, A.; Le Maıˆtre, O. P., Generalized spectral decomposition for stochastic nonlinear problems, J. Comput. Phys., 228, 202-235 (2009) · Zbl 1157.65009
[21] Blatman, G.; Sudret, B., An adaptive algorithm to build up sparse polynomial chaos expansions for stochastic finite element analysis, Probabilist. Eng. Mech., 25, 183-197 (2010)
[22] Blatman, G.; Sudret, B., Efficient computation of Sobol’ sensitivity indices using sparse polynomial chaos expansions, Reliab. Eng. Sys. Safe., 95, 11, 1216-1229 (2010)
[23] Efron, B.; Hastie, T.; Johnstone, I.; Tibshirani, R., Least angle regression, Ann. Stat., 32, 407-499 (2004) · Zbl 1091.62054
[24] Wiener, N., The homogeneous chaos, Am. J. Math., 60, 897-936 (1938) · JFM 64.0887.02
[25] Xiu, D.; Karniadakis, G. E., The Wiener-Askey polynomial chaos for stochastic differential equations, SIAM J. Sci. Comput., 24, 2, 619-644 (2002) · Zbl 1014.65004
[26] Xiu, D.; Lucor, D.; Su, C.-H.; Karniadakis, G. E., Stochastic modeling of flow-structure interactions using generalized polynomial chaos, J. Fluid Eng., 124, 1, 51-59 (2002)
[27] Lucor, D.; Karniadakis, G. E., Adaptive generalized polynomial chaos for nonlinear random oscillators, SIAM J. Sci. Comput., 26, 2, 720-735 (2004) · Zbl 1075.65008
[28] Schoutens, W., Stochastic Processes and Orthogonal Polynomials (2000), Springer-Verlag: Springer-Verlag New York · Zbl 0960.60076
[29] Wan, X.; Karniadakis, G., Beyond Wiener-Askey expansions: handling arbitrary PDFs, J. Sci. Comput., 27, 455-464 (2006) · Zbl 1102.65006
[30] Witteveen, J. A.S.; Sarkar, S.; Bijl, H., Modeling physical uncertainties in dynamic stall induced fluid-structure interaction of turbine blades using arbitrary polynomial chaos, Computers & Structures, 85, 866-878 (2007)
[31] Loève, M., Probability Theory (1977), Springer-Verlag: Springer-Verlag New York · Zbl 0359.60001
[32] B. Sudret, A. Der Kiureghian, Stochastic finite elements and reliability: a state-of-the-art report, Technical report UCB/SEMM-2000/08, University of California, Berkeley, 2000, p. 173.; B. Sudret, A. Der Kiureghian, Stochastic finite elements and reliability: a state-of-the-art report, Technical report UCB/SEMM-2000/08, University of California, Berkeley, 2000, p. 173.
[33] Zhang, J.; Ellingwood, B., Orthogonal series expansion of random fields in reliability analysis, J. Eng. Mech., 120, 12, 2660-2677 (1994)
[34] Phoon, K. K.; Huang, S. P.; Quek, S. T., Implementation of Karhunen-Loève expansion for simulation using a wavelet-Galerkin scheme, Probabilist. Eng. Mech., 17, 3, 293-303 (2002)
[35] Grigoriu, M., Simulation of non-Gaussian translation processes, J. Eng. Mech., 124, 2, 121-126 (1998)
[36] Lagaros, N. D.; Stefanou, G.; Papadrakakis, M., An enhanced hybrid method for the simulation of highly skewed non-Gaussian stochastic fields, Comput. Methods Appl. Mech. Eng., 194, 4824-4844 (2005) · Zbl 1094.65010
[37] M. Berveiller, Stochastic finite elements: intrusive and non intrusive methods for reliability analysis, Ph.D. Thesis, Université Blaise Pascal, Clermont-Ferrand, 2005.; M. Berveiller, Stochastic finite elements: intrusive and non intrusive methods for reliability analysis, Ph.D. Thesis, Université Blaise Pascal, Clermont-Ferrand, 2005.
[38] M. Berveiller, Eléments finis stochastiques: approches intrusive et non intrusive pour des analyses de fiabilité, Ph.D. Thesis, Université Blaise Pascal, Clermont-Ferrand, 2005.; M. Berveiller, Eléments finis stochastiques: approches intrusive et non intrusive pour des analyses de fiabilité, Ph.D. Thesis, Université Blaise Pascal, Clermont-Ferrand, 2005.
[39] G. Blatman, Adaptive sparse polynomial chaos expansions for uncertainty propagation and sensitivity analysis, Ph.D. Thesis, Université Blaise Pascal, Clermont-Ferrand, 2009.; G. Blatman, Adaptive sparse polynomial chaos expansions for uncertainty propagation and sensitivity analysis, Ph.D. Thesis, Université Blaise Pascal, Clermont-Ferrand, 2009.
[40] Montgomery, D. C., Design and Analysis of Experiments (2004), John Wiley and Sons: John Wiley and Sons New York
[41] Babenko, K. I., Approximation by trigonometric polynomials in a certain class of periodic functions of several variables, Soviet Math. Dokl., 1, 672-675 (1960) · Zbl 0102.05301
[42] Bungartz, H. J.; Griebel, M., Sparse grids, Acta Numer., 13, 147-269 (2004)
[43] Blatman, G.; Sudret, B., Sparse polynomial chaos expansions and adaptive stochastic finite elements using a regression approach, C. R. Mécanique, 336, 6, 518-523 (2008) · Zbl 1138.74046
[44] Vapnik, V. N., The Nature of Statistical Learning Theory (1995), Springer-Verlag: Springer-Verlag New York · Zbl 0934.62009
[45] D. Allen, The prediction sum of squares as a criterion for selecting prediction variables, Technical report 23, Department of Statistics, University of Kentucky, 1971.; D. Allen, The prediction sum of squares as a criterion for selecting prediction variables, Technical report 23, Department of Statistics, University of Kentucky, 1971.
[46] Miller, R. G., The Jacknife – a review, Biometrika, 61, 1-15 (1974) · Zbl 0275.62035
[47] Saporta, G., Probabilités, analyse des données et statistique (2006), Editions Technip · Zbl 1185.62008
[48] Molinaro, A. M.; Simon, R.; Pfeiffer, R. M., Prediction error estimation: a comparison of resampling methods, Bioinformatics, 21, 3301-3307 (2005)
[49] Chapelle, O.; Vapnik, V.; Bengio, Y., Model selection for small sample regression, Mach. Learn., 48, 1, 9-23 (2002) · Zbl 0998.68114
[50] Madigan, D.; Ridgeway, G., Discussion of “least angle regression” by Efron et al., Ann. Stat., 32, 465-469 (2004)
[51] McKay, M. D.; Beckman, R. J.; Conover, W. J., A comparison of three methods for selecting values of input variables in the analysis of output from a computer code, Technometrics, 2, 239-245 (1979) · Zbl 0415.62011
[52] Niederreiter, H., Random Number Generation and Quasi-Monte Carlo Methods (1992), SIAM: SIAM Philadelphia, PA, USA · Zbl 0761.65002
[53] Morokoff, W. J.; Caflisch, R. E., Quasi-Monte Carlo integration, J. Comput. Phys., 122, 218-230 (1995) · Zbl 0863.65005
[54] Ishigami, T.; Homma, T., An importance quantification technique in uncertainty analysis for computer models, (Proceedings of the ISUMA’1990, First International Symposium on Uncertainty Modelling Analysis (1990), University of Maryland), 398-403
[55] (Saltelli, A.; Chan, K.; Scott, E. M., Sensitivity Analysis (2000), Jhon Wiley and Sons) · Zbl 0961.62091
[56] Lee, S. H.; Kwak, B. M., Response surface augmented moment method for efficient reliability analysis, Struct. Safe., 28, 261-272 (2006)
[57] Sudret, B.; Der Kiureghian, A., Comparison of finite element reliability methods, Probabilist. Eng. Mech., 17, 337-348 (2002)
[58] Keese, A.; Matthies, H. G., Sparse quadrature as an alternative to Monte Carlo for stochastic finte element techniques, Proc. Appl. Math. Mech., 3, 493-494 (2003) · Zbl 1354.65013
[59] Xiu, D., Fast numerical methods for stochastic computations: a review, Commun. Comput. Phys., 5, 2-4, 242-272 (2009) · Zbl 1364.65019
[60] Smolyak, S. A., Quadrature and interpolation formulas for tensor products of certain classes of functions, Soviet. Math. Dokl., 4, 240-243 (1963) · Zbl 0202.39901
[61] Novak, E.; Ritter, K., Simple cubature formulas with high polynomial exactness, Constr. Approx, 15, 499-522 (1999) · Zbl 0942.41018
[62] A.B. Owen, Detecting near linearity in high dimensions, Technical report, Stanford University, Department of Statistics, 1998.; A.B. Owen, Detecting near linearity in high dimensions, Technical report, Stanford University, Department of Statistics, 1998.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.