×

Galerkin methods for linear and nonlinear elliptic stochastic partial differential equations. (English) Zbl 1088.65002

Authors’ abstract: Stationary systems modelled by elliptic partial differential equations – linear as well as nonlinear – with stochastic coefficients (random fields) are considered. The mathematical setting as a variational problem, existence theorems, and possible discretisations – in particular with respect to the stochastic part – are given and investigated with regard to stability.
Different and increasingly sophisticated computational approaches involving both Wiener’s polynomial chaos as well as the Karhunen-Loève expansion are addressed in conjunction with stochastic Galerkin procedures, and stability within the Galerkin framework is established. New and effective algorithms to compute the mean and covariance of the solution are proposed.
The similarities and differences with better known Monte Carlo methods are exhibited, as well as alternatives to integration in high-dimensional spaces. Hints are given regarding the numerical implementation and parallelisation. Numerical examples serve as illustration.

MSC:

65C30 Numerical solutions to stochastic differential and integral equations
60H15 Stochastic partial differential equations (aspects of stochastic analysis)
35R60 PDEs with randomness, stochastic partial differential equations
60H35 Computational methods for stochastic equations (aspects of stochastic analysis)
35J25 Boundary value problems for second-order elliptic equations
35J65 Nonlinear boundary value problems for linear elliptic equations
65N12 Stability and convergence of numerical methods for boundary value problems involving PDEs
65C05 Monte Carlo methods

Software:

Smolpack

References:

[1] Adler, R. J., The Geometry of Random Fields (1981), John Wiley: John Wiley Chichester · Zbl 0478.60059
[2] Atkinson, K. E., The Numerical Solution of Integral Equations of the Second Kind (1997), Cambridge University Press: Cambridge University Press Cambridge · Zbl 0155.47404
[3] Babuška, I., On randomized solutions of Laplace’s equation, Časopis pro Pěstováni Matematiky, 86, 269-275 (1961), cited in [17] · Zbl 0116.10503
[4] Babuška, I.; Chatzipantelidis, P., On solving elliptic stochastic partial differential equations, Comput. Methods Appl. Mech. Engrg., 191, 4093-4122 (2002) · Zbl 1019.65010
[5] Babuška, I.; Chleboun, J., Effects of uncertainties in the domain on the solution of Neumann boundary value problems in two spatial dimensions, Math. Comput., 71, 240, 1339-1370 (2003) · Zbl 1007.65086
[6] Babuška, I.; Tempone, R.; Zouraris, G. E., Galerkin finite element approximations of stochastic elliptic partial differential equations, SIAM J. Numer. Anal., 42, 800-825 (2004) · Zbl 1080.65003
[7] Babuška, I.; Liu, K.-M.; Tempone, R., Solving stochastic partial differential equations based on the experimental data, Math. Models Methods Appl. Sci., 13, 415-444 (2003) · Zbl 1052.60047
[8] Bahvalov, N. S., On approximate calculation of multiple integrals, Vestnik Moskovskogo Univers. Ser. Mat. Meh. Astr. Fiz. Him., 4, 3-18 (1959), (in Russian)
[9] N.S. Bahvalov, On the optimal estimation of speed of convergence of the quadrature processes and Monte Carlo integration methods on the classes of functions, in: Numerical Methods for the Solution of Differential and Integral Equations and Quadrature Formulas, Nauka, Moscow, 1964, pp. 5-63 (in Russian); N.S. Bahvalov, On the optimal estimation of speed of convergence of the quadrature processes and Monte Carlo integration methods on the classes of functions, in: Numerical Methods for the Solution of Differential and Integral Equations and Quadrature Formulas, Nauka, Moscow, 1964, pp. 5-63 (in Russian)
[10] Bahvalov, N. S., Numerical Methods (1977), Mir: Mir Moscow
[11] Benth, F. E.; Gjerde, J., Convergence rates for finite element approximations for stochastic partial differential equations, Stochastics Stochastics Rep., 63, 313-326 (1998) · Zbl 0902.60048
[12] P. Besold, Solutions to stochastic partial differential equations as elements of tensor product spaces. Doctoral thesis, Georg-August-Universitt, Gttingen, 2000; P. Besold, Solutions to stochastic partial differential equations as elements of tensor product spaces. Doctoral thesis, Georg-August-Universitt, Gttingen, 2000 · Zbl 0984.60071
[13] Caflisch, R. E., Monte Carlo and quasi-Monte Carlo methods, Acta Numer., 7, 1-49 (1998) · Zbl 0949.65003
[14] Christakos, G., Random Field Models in Earth Sciences (1992), Academic Press: Academic Press San Diego, CA
[15] Ciarlet, P. G., The Finite Element Method for Elliptic Problems (1978), North-Holland: North-Holland Amsterdam · Zbl 0445.73043
[16] Courant, R.; Hilbert, D., Methods of Mathematical Physics (1989), John Wiley: John Wiley Chichester, vol. 1 · Zbl 0729.00007
[17] Deb, M. K.; Babuška, I.; Oden, J. T., Solution of stochastic partial differential equations using Galerkin finite element techniques, Comput. Methods Appl. Mech. Engrg., 190, 6359-6372 (2001) · Zbl 1075.65006
[18] Dennis, J. E.; Schnabel, R. B., Numerical Methods for Unconstrained Optimization and Nonlinear Equations (1996), SIAM: SIAM Philadelphia, PA, originally published by Prentice-Hall, Englewood Cliffs, NJ, 1983 · Zbl 0847.65038
[19] DerKuireghian, A.; Ke, J.-B., The stochastic finite element method in structural reliability, J. Engrg. Mech., 117, 83-91 (1988)
[20] Doltsinis, I., Inelastic deformation processes with random parameters—methods of analysis and design, Comput. Methods Appl. Mech. Engrg., 192, 2405-2423 (2003) · Zbl 1119.74627
[21] H. Elman, O.G. Ernst, D.P. O’Leary, M. Stewart, Efficient iterative algorithms for the stochastic finite element method with application to acoustic scattering. Technical Report CS-TR # 4423/UMIACS TR # 2002-102, Institute for Advanced Computer Studies, Department of Computer Science, University of Maryland, College Park, MD, 20742; H. Elman, O.G. Ernst, D.P. O’Leary, M. Stewart, Efficient iterative algorithms for the stochastic finite element method with application to acoustic scattering. Technical Report CS-TR # 4423/UMIACS TR # 2002-102, Institute for Advanced Computer Studies, Department of Computer Science, University of Maryland, College Park, MD, 20742
[22] Gerstner, T.; Griebel, M., Numerical integration using sparse grids, Numer. Algorithms, 18, 209-232 (1998) · Zbl 0921.65022
[23] Ghanem, R., Ingredients for a general purpose stochastic finite elements implementation, Comput. Methods Appl. Mech. Engrg., 168, 19-34 (1999) · Zbl 0943.65008
[24] Ghanem, R., Stochastic finite elements for heterogeneous media with multiple random non-gaussian properties, ASCE J. Engrg. Mech., 125, 24-40 (1999)
[25] Ghiocel, D.; Ghanem, R., Stochastic finite-element analysis of seismic soil-structure interaction, ASCE J. Engrg. Mech., 128, 66-77 (2002)
[26] Ghanem, R.; Spanos, P. D., Stochastic Finite Elements—A Spectral Approach (1991), Springer-Verlag: Springer-Verlag Berlin · Zbl 0722.73080
[27] Ghanem, R.; Kruger, R., Numerical solution of spectral stochastic finite element systems, Comput. Methods Appl. Mech. Engrg., 129, 289-303 (1999) · Zbl 0861.73071
[28] Golub, G.; Van Loan, C. F., Matrix Computations (1996), Johns Hopkins University Press: Johns Hopkins University Press Baltimore, MD · Zbl 0865.65009
[29] Griebel, M.; Oswald, P.; Schiekofer, T., Sparse grids for boundary integral equations, Numer. Math., 83, 279-312 (1999) · Zbl 0935.65131
[30] Haldar, A.; Mahadevan, S., Reliability Assessment using Stochastic Finite Element Analysis (2000), John Wiley: John Wiley Chichester
[31] Holden, H.; ksendal, B.; Ube, J.; Zhang, T.-S., Stochastic Partial Differential Equations (1996), Birkhuser Verlag: Birkhuser Verlag Basel · Zbl 0860.60045
[32] Janson, S., Gaussian Hilbert Spaces (1997), Cambridge University Press: Cambridge University Press Cambridge · Zbl 0887.60009
[33] Jeggle, H., Nichtlineare Funktionalanalysis (1979), BG Teubner: BG Teubner Stuttgart · Zbl 0435.47051
[34] Jardak, M.; Su, C.-H.; Karniadakis, G. E., Spectral polynomial chaos solutions of the stochastic advection equation, SIAM J. Sci. Comput., 17, 319-338 (2002) · Zbl 1001.76084
[35] A. Keese: A review of recent developments in the numerical solution of stochastic PDEs (stochastic finite elements), Technical Report, Informatikbericht 2003-6, Institute of Scientific Computing, Department of Mathematics and Computer Science, Technische Universität Braunschweig, Brunswick, June 2003. URL:; A. Keese: A review of recent developments in the numerical solution of stochastic PDEs (stochastic finite elements), Technical Report, Informatikbericht 2003-6, Institute of Scientific Computing, Department of Mathematics and Computer Science, Technische Universität Braunschweig, Brunswick, June 2003. URL:
[36] A. Keese, H.G. Matthies, Parallel solution of stochastic PDEs. Proc. Appl. Math. Mech. 2 (2003) 485-486; A. Keese, H.G. Matthies, Parallel solution of stochastic PDEs. Proc. Appl. Math. Mech. 2 (2003) 485-486 · Zbl 1201.65013
[37] A. Keese, H.G. Matthies: Efficient solvers for nonlinear stochastic problems, in: Proceedings of WCCM V—5th World Congress Comput. Mech., Vienna, 7-12 July 2002. URL:; A. Keese, H.G. Matthies: Efficient solvers for nonlinear stochastic problems, in: Proceedings of WCCM V—5th World Congress Comput. Mech., Vienna, 7-12 July 2002. URL:
[38] Keese, A.; Matthies, H. G., Parallel solution methods for stochastic systems, (Bathe, K.-J., Computational Fluid and Solid Mechanics—Proceedings of the 2nd MIT Conference (2003), Elsevier: Elsevier Amsterdam), 2023-2025 · Zbl 1435.65019
[39] Keese, A.; Matthies, H. G., Adaptivity and sensitivity for stochastic problems, (Spanos, P. D.; Deodatis, G., Computational Stochastic Mechanics, vol. 4 (2003), Millpress), 311-316 · Zbl 1435.65019
[40] A. Keese, H.G. Matthies, Numerical methods and Smolyak quadrature for nonlinear stochastic partial differential equations, SIAM J. Sci. Comput., submitted for publication; A. Keese, H.G. Matthies, Numerical methods and Smolyak quadrature for nonlinear stochastic partial differential equations, SIAM J. Sci. Comput., submitted for publication · Zbl 1088.65002
[41] A. Keese, Numerical solution of systems with stochastic uncertainties-a general purpose framework for stochastic finite elements, Doctoral thesis, Technische Universität Braunschweig, Brunswick, 2004; A. Keese, Numerical solution of systems with stochastic uncertainties-a general purpose framework for stochastic finite elements, Doctoral thesis, Technische Universität Braunschweig, Brunswick, 2004 · Zbl 1096.60027
[42] A. Keese, H.G. Matthies, The hierarchical parallel solution of stochastic finite element equations, Comput. Structures, submitted for publication; A. Keese, H.G. Matthies, The hierarchical parallel solution of stochastic finite element equations, Comput. Structures, submitted for publication · Zbl 1354.65013
[43] Kleiber, M.; Hien, T. D., The Stochastic Finite Element Method. Basic Perturbation Technique and Computer Implementation (1992), John Wiley: John Wiley Chichester · Zbl 0902.73004
[44] Kloeden, P. E.; Platen, E., Numerical Solution of Stochastic Differential Equations (1995), Springer-Verlag: Springer-Verlag Berlin · Zbl 0858.65148
[45] Khuri, A.; Cornell, J., Response Surfaces: Designs and Analyses (1987), Marcel Dekker: Marcel Dekker New York, NY · Zbl 0632.62069
[46] Kre, P.; Soize, C., Mathematics of Random Phenomena (1986), D. Reidel Pub. Co.: D. Reidel Pub. Co. Dordrecht · Zbl 0628.73099
[47] Liu, W.-K.; Belytschko, T.; Mani, A., Probabilistic finite elements for nonlinear structural dynamics, Comput. Methods Appl. Mech. Engrg., 56, 61-86 (1986) · Zbl 0576.73066
[48] Liu, W.-K.; Belytschko, T.; Mani, A., Random field finite elements, Int. J. Numer. Methods Engrg., 23, 1831-1845 (1986) · Zbl 0597.73075
[49] Loève, M., Probability Theory (1977), Springer-Verlag: Springer-Verlag Berlin · Zbl 0359.60001
[50] Malliavin, P., Stochastic Analysis (1997), Springer-Verlag: Springer-Verlag Berlin · Zbl 0878.60001
[51] Matthies, H.; Strang, G., The solution of nonlinear finite element equations, Int. J. Numer. Methods Engrg., 14, 1613-1626 (1979) · Zbl 0419.65070
[52] Matthies, H. G.; Brenner, C. E.; Bucher, C. G.; GuedesSoares, C., Uncertainties in probabilistic numerical analysis of structures and solids—stochastic finite elements, Struct. Safety, 19, 283-336 (1997)
[53] Matthies, H. G.; Bucher, C. G., Finite elements for stochastic media problems, Comput. Methods Appl. Mech. Engrg., 168, 3-17 (1999) · Zbl 0953.74065
[54] Matthies, H. G.; Keese, A., Fast solvers for the white noise analysis of stochastic systems, Proc. Appl. Math. Mech., 1, 456-457 (2002) · Zbl 1435.65019
[55] H.G. Matthies, A. Keese, Multilevel methods for stochastic systems, in: Proc. of the 2nd Europ. Conf. Comp. Mech., ECCM-2001, Krakau, 2001; H.G. Matthies, A. Keese, Multilevel methods for stochastic systems, in: Proc. of the 2nd Europ. Conf. Comp. Mech., ECCM-2001, Krakau, 2001 · Zbl 1435.65019
[56] Matthies, H. G.; Keese, A., Multilevel solvers for the analysis of stochastic systems, (Bathe, K.-J., Computational Fluid and Solid Mechanics—Proceedings of the 1st MIT Conference (2001), Elsevier: Elsevier Amsterdam), 1620-1622 · Zbl 1435.65019
[57] Márquez-Carreras, D.; Mellouk, M.; Sarrà, M., On stochastic partial differential equations with spatially correlated noise: smoothness of the law, Stoch. Process. Appl., 93, 269-284 (2001) · Zbl 1053.60070
[58] Niederreiter, H., Random Number Generation and Quasi-Monte Carlo Methods (1992), SIAM: SIAM Philadelphia, PA · Zbl 0761.65002
[59] Novak, E.; Ritter, K., High dimensional integration of smooth functions over cubes, Numer. Math., 75, 79-97 (1996) · Zbl 0883.65016
[60] Novak, E.; Ritter, K., The curse of dimension and a universal method for numerical integration, (Nrnberger, G.; Schmidtand, J. W.; Walz, G., Multivariate Approximation and Splines, ISNM (1997), Birkhuser Verlag: Birkhuser Verlag Basel), 177-188 · Zbl 0889.65016
[61] Novak, E.; Ritter, K., Simple cubature formulas with high polynomial exactness, Constr. Approx., 15, 499-522 (1999) · Zbl 0942.41018
[62] Oden, J. T.; Reddy, J. N., An Introduction to the Mathematical Theory of Finite Elements (1976), John Wiley: John Wiley Chichester · Zbl 0336.35001
[63] Oden, J. T., Qualitative Methods in Nonlinear Mechanics (1986), Prentice-Hall: Prentice-Hall Englewood Cliffs, NJ · Zbl 0578.70001
[64] Papadrakakis, M.; Papadopoulos, V., Robust and efficient methods for stochastic finite element analysis using Monte Carlo simulation, Comput. Methods Appl. Mech. Engrg., 134, 325-340 (1996) · Zbl 0891.73079
[65] Pellissetti, M.; Ghanem, R., Iterative solution of systems of linear equations arising in the context of stochastic finite elements, Adv. Engrg. Softw., 31, 607-616 (2000) · Zbl 1003.68553
[66] K. Petras, Smolpack—a software for Smolyak quadrature with delayed Clenshaw-Curtis basis-sequence. URL:; K. Petras, Smolpack—a software for Smolyak quadrature with delayed Clenshaw-Curtis basis-sequence. URL:
[67] K. Petras, Asymptotically minimal Smolyak Cubature, preprint, 2003; K. Petras, Asymptotically minimal Smolyak Cubature, preprint, 2003
[68] Petras, K., Fast calculation of coefficients in the Smolyak algorithm, Numer. Algorithms, 26, 93-109 (2001) · Zbl 0976.65015
[69] Riesz, F.; Nagy, B. Sz., Functional Analysis (1990), Dover Publications: Dover Publications New York, NY · Zbl 0732.47001
[70] Sakamoto, S.; Ghanem, R., Simulation of multi-dimensional non-Gaussian non-stationary random fields, Prob. Engrg. Mech., 17, 167-176 (2002)
[71] Schuëller, G. I., A state-of-the-art report on computational stochastic mechanics, Prob. Engrg. Mech., 14, 197-321 (1997)
[72] Schuëller, G. I., Recent developments in structural computational stochastic mechanics, (Topping, B. H.V., Computational Mechanics for the Twenty-First Century (2000), Saxe-Coburg Publications: Saxe-Coburg Publications Edinburgh), 281-310 · Zbl 1168.74398
[73] Schwab, C.; Todor, R.-A., Sparse finite elements for stochastic elliptic problems—higher order moments, Computing, 71, 43-63 (2003) · Zbl 1044.65006
[74] Shinozuka, M.; Deodatis, G., Simulation of stochastic processes and fields, Prob. Engrg. Mech., 14, 203-207 (1997)
[75] Smolyak, S. A., Quadrature and interpolation formulas for tensor products of certain classes of functions, Sov. Math. Dokl., 4, 240-243 (1963) · Zbl 0202.39901
[76] Strang, G.; Fix, G. J., An analysis of the finite element method (1988), Wellesley-Cambridge Press: Wellesley-Cambridge Press Wellesley, MA
[77] B. Sudret, A. Der Kiureghian, Stochastic finite element methods and reliability. A state-of-the-art report, Technical Report UCB/SEMM-2000/08, Department of Civil & Environmental Engineering, University of California, Berkeley, CA, 2000; B. Sudret, A. Der Kiureghian, Stochastic finite element methods and reliability. A state-of-the-art report, Technical Report UCB/SEMM-2000/08, Department of Civil & Environmental Engineering, University of California, Berkeley, CA, 2000
[78] Theting, T. G., Solving Wick-stochastic boundary value problems using a finite element method, Stochastics Stochastics Rep., 70, 241-270 (2000) · Zbl 0974.65009
[79] Våge, G., Variational methods for PDEs applied to stochastic partial differential equations, Math. Scand., 82, 113-137 (1998) · Zbl 0921.60055
[80] Vanmarcke, E., Random Fields: Analysis and Synthesis (1988), The MIT Press: The MIT Press Cambridge, MA
[81] Wiener, N., The homogeneous chaos, Amer. J. Math., 60, 897-936 (1938) · JFM 64.0887.02
[82] Xiu, D.; Karniadakis, G. E., The Wiener-Askey polynomial chaos for stochastic differential equations, SIAM J. Sci. Comput., 24, 619-644 (2002) · Zbl 1014.65004
[83] Xiu, D.; Lucor, D.; Su, C.-H.; Karniadakis, G. E., Stochastic modeling of flow-structure interactions using generalized polynomial chaos, ASME J. Fluid Engrg., 124, 51-69 (2002)
[84] Xiu, D.; Karniadakis, G. E., Modeling uncertainty in steady state diffusion problems via generalized polynomial chaos, Comput. Methods Appl. Mech. Engrg., 191, 4927-4948 (2002) · Zbl 1016.65001
[85] O.C. Zienkiewicz, R.L. Taylor, The Finite Element Method—volume 1, the basis, 5th ed., Butterwort-Heinemann, Oxford, 2000; O.C. Zienkiewicz, R.L. Taylor, The Finite Element Method—volume 1, the basis, 5th ed., Butterwort-Heinemann, Oxford, 2000 · Zbl 0991.74002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.