×

Global solutions and blow-up for a coupled system of nonlinear hyperbolic equations with weak damping. (English) Zbl 1527.35410

Summary: This paper investigates a coupled system of nonlinear hyperbolic equations with weak damping. It is shown that the global solution and finite time blow-up solution exist at subcritical or critical initial energy. Moreover, the finite time blow-up result at arbitrarily high initial energy is obtained. Also, we derive the exponential energy decay estimation of the global solution and estimate the upper and lower bounds of the blow-up time.

MSC:

35Q74 PDEs in connection with mechanics of deformable solids
35A01 Existence problems for PDEs: global existence, local existence, non-existence
35B44 Blow-up in context of PDEs
74H35 Singularities, blow-up, stress concentrations for dynamical problems in solid mechanics
74K05 Strings
74K10 Rods (beams, columns, shafts, arches, rings, etc.)
74H45 Vibrations in dynamical problems in solid mechanics
Full Text: DOI

References:

[1] M. Aassila, Stability of dynamic models of suspension bridges, Math. Nachr., 235, 5-15 (2002) · Zbl 0993.35015 · doi:10.1002/1522-2616(200202)235:1<5::AID-MANA5>3.0.CO;2-J
[2] N. U. H. Ahmed Harbi, Mathematical analysis of dynamic models of suspension bridges, SIAM J. Appl. Math., 58, 853-874 (1998) · Zbl 0912.93048 · doi:10.1137/S0036139996308698
[3] Y. An, Nonlinear perturbations of a coupled system of steady state suspension bridge equations, Nonlinear Anal., 51, 1285-1292 (2002) · Zbl 1165.74323 · doi:10.1016/S0362-546X(01)00899-9
[4] M. Aouadi, Robustness of global attractors for extensible coupled suspension bridge equations with fractional damping, Appl. Math. Optim., 84, S403-S435 (2021) · Zbl 1477.35256 · doi:10.1007/s00245-021-09774-8
[5] A. W. Arena Lacarbonara, Nonlinear parametric modeling of suspension bridges under aeroelastic forces: torsional divergence and flutter, Nonlinear Dynam., 70, 2487-2510 (2012) · doi:10.1007/s11071-012-0636-3
[6] I. C. E. Bochicchio Giorgi Vuk, Asymptotic dynamics of nonlinear coupled suspension bridge equations, J. Math. Anal. Appl., 402, 319-333 (2013) · Zbl 1307.35293 · doi:10.1016/j.jmaa.2013.01.036
[7] I. C. E. Bochicchio Giorgi Vuk, Long-term dynamics of the coupled suspension bridge system, Math. Models Methods Appl. Sci., 22, 1250021 (2012) · Zbl 1252.35186 · doi:10.1142/S0218202512500212
[8] M. J. M. G. Campo Fernández Naso, A dynamic problem involving a coupled suspension bridge system: numerical analysis and computational experiments, Evol. Equ. Control Theory, 8, 489-502 (2019) · Zbl 1425.74074 · doi:10.3934/eect.2019024
[9] F. C. V. Dell’Oro Giorgi Pata, Asymptotic behavior of coupled linear systems modeling suspension bridges, Z. Angew. Math. Phys., 66, 1095-1108 (2015) · Zbl 1329.35059 · doi:10.1007/s00033-014-0414-9
[10] H. J. Ding Zhou, Global existence and blow-up of solutions to a nonlocal Kirchhoff diffusion problem, Nonlinearity, 33, 6099-6133 (2020) · Zbl 1452.35073 · doi:10.1088/1361-6544/ab9f84
[11] H. J. Ding Zhou, Global existence and blow-up for a parabolic problem of Kirchhoff type with logarithmic nonlinearity, Appl. Math. Optim., 83, 1651-1707 (2021) · Zbl 1469.35122 · doi:10.1007/s00245-019-09603-z
[12] H. J. Ding Zhou, Well-posedness of solutions for a class of quasilinear wave equations with strong damping and logarithmic nonlinearity, Stud. Appl. Math., 149, 441-486 (2022) · Zbl 1529.35052 · doi:10.1111/sapm.12498
[13] H. Ding and J. Zhou, Well-posedness of solutions for a class of quasilinear wave equations with structural damping or strong damping, Chaos Solitons Fractals, 163 (2022), Paper No. 112553, 17pp. · Zbl 1507.35113
[14] H. Ding and J. Zhou, Blow-up for the Timoshenko-type equation with variable exponents, Nonlinear Anal. Real World Appl., 71 (2023), Paper No. 103801, 20pp. · Zbl 1517.35064
[15] Z. Ding, On nonlinear oscillations in a suspension bridge system, Trans. Amer. Math. Soc., 354, 265-274 (2002) · Zbl 0981.35089 · doi:10.1090/S0002-9947-01-02864-1
[16] Z. Ding, Traveling waves in a suspension bridge system, SIAM J. Math. Anal., 35, 160-171 (2003) · Zbl 1039.35128 · doi:10.1137/S0036141002412690
[17] V. A. Galaktionov, E. L. Mitidieri and S. I. Pohozaev, Blow-up for Higher-order Parabolic, Hyperbolic, Dispersion and Schrödinger Equations, Monographs and Research Notes in Mathematics. CRC Press, Boca Raton, FL, 2015. · Zbl 1320.35002
[18] J. A. C. P. J. Glover Lazer McKenna, Existence and stability of large scale nonlinear oscillations in suspension bridges, Z. Angew. Math. Phys., 40, 172-200 (1989) · Zbl 0677.73046 · doi:10.1007/BF00944997
[19] Y. Han, A class of fourth-order parabolic equation with arbitrary initial energy, Nonlinear Anal. Real World Appl., 43, 451-466 (2018) · Zbl 1516.35079 · doi:10.1016/j.nonrwa.2018.03.009
[20] G. A. Holubová Matas, Initial-boundary value problem for the nonlinear string-beam system, J. Math. Anal. Appl., 288, 784-802 (2003) · Zbl 1037.35087 · doi:10.1016/j.jmaa.2003.09.028
[21] L. Hörmander, The lifespan of classical solutions of nonlinear hyperbolic equations, Pseudodifferential Operators, 1986 (Oberwolfach), Lecture Notes in Math., 1256, Springer, Berlin, 1987,214-280. · Zbl 0632.35045
[22] L. D. Humphreys, Numerical mountain pass solutions of a suspension bridge equation, Nonlinear Anal., 28, 1811-1826 (1997) · Zbl 0877.35126 · doi:10.1016/S0362-546X(96)00020-X
[23] J. R. Kang, Pullback attractors for the non-autonomous coupled suspension bridge equations, Appl. Math. Comput., 219, 8747-8758 (2013) · Zbl 1295.35114 · doi:10.1016/j.amc.2013.02.047
[24] M. O. Korpusov, A. V. Ovchinnikov, A. G, Sveshnikov and E. V. Yushkov, Blow-up in Nonlinear Equations of Mathematical Physics, De Gruyter Series in Nonlinear Analysis and Applications, 27, De Gruyter, Berlin, 2018. · Zbl 1420.35005
[25] A. C. P. J. Lazer McKenna, Large-amplitude periodic oscillations in suspension bridges: some new connections with nonlinear analysis, SIAM Rev., 32, 537-578 (1990) · Zbl 0725.73057 · doi:10.1137/1032120
[26] H. Leiva, Exact controllability of the suspension bridge model proposed by Lazer and McKenna, J. Math. Anal. Appl., 309, 404-419 (2005) · Zbl 1142.93316 · doi:10.1016/j.jmaa.2004.07.025
[27] H. A. Levine, Some additional remarks on the nonexistence of global solutions to nonlinear wave equations, SIAM J. Math. Anal., 5, 138-146 (1974) · Zbl 0243.35069 · doi:10.1137/0505015
[28] G. Liţcanu, A mathematical model of suspension bridges, Appl. Math., 49, 39-55 (2004) · Zbl 1099.74037 · doi:10.1023/B:APOM.0000024519.46627.4f
[29] W. Liu and H. Zhuang, Global existence, asymptotic behavior and blow-up of solutions for a suspension bridge equation with nonlinear damping and source terms, NoDEA Nonlinear Differential Equations Appl., 24 (2017), Paper No. 67, 35pp. · Zbl 1403.35177
[30] Y. J. Y. Liu Mu Jiao, A class of fourth order damped wave equations with arbitrary positive initial energy, Proc. Edinb. Math. Soc., 62, 165-178 (2019) · Zbl 1437.35110 · doi:10.1017/S0013091518000330
[31] Y. Luo, R. Xu and C. Yang, Global well-posedness for a class of semilinear hyperbolic equations with singular potentials on manifolds with conical singularities, Calc. Var. Partial Differential Equations, 61 (2022), Paper No. 210, 47pp. · Zbl 1498.35110
[32] Q. S. X. Ma Wang Chen, Uniform compact attractors for the coupled suspension bridge equations, Appl. Math. Comput., 217, 6604-6615 (2011) · Zbl 1419.35007 · doi:10.1016/j.amc.2011.01.045
[33] Q. C. Ma Zhong, Existence of strong solutions and global attractors for the coupled suspension bridge equations, J. Differential Equations, 246, 3755-3775 (2009) · Zbl 1176.35036 · doi:10.1016/j.jde.2009.02.022
[34] J. Malík, Mathematical modelling of cable stayed bridges: existence, uniqueness, continuous dependence on data, homogenization of cable systems, Appl. Math., 49, 1-38 (2004) · Zbl 1099.35151 · doi:10.1023/B:APOM.0000024518.38660.a3
[35] J. Malík, Spectral analysis connected with suspension bridge systems, IMA J. Appl. Math., 81, 42-75 (2016) · Zbl 1333.74042 · doi:10.1093/imamat/hxv027
[36] Y. Wang, Finite time blow-up and global solutions for fourth order damped wave equations, J. Math. Anal. Appl., 418, 713-733 (2014) · Zbl 1310.35046 · doi:10.1016/j.jmaa.2014.04.015
[37] R. J. Xu Su, Global existence and finite time blow-up for a class of semilinear pseudo-parabolic equations, J. Funct. Anal., 264, 2732-2763 (2013) · Zbl 1279.35065 · doi:10.1016/j.jfa.2013.03.010
[38] R. X. Y. S. Xu Wang Yang Chen, Global solutions and finite time blow-up for fourth order nonlinear damped wave equation, J. Math. Phys., 59, 061503 (2018) · Zbl 1395.35137 · doi:10.1063/1.5006728
[39] H. Y. Yang Han, Blow-up for a damped \(p\)-Laplacian type wave equation with logarithmic nonlinearity, J. Differential Equations, 306, 569-589 (2022) · Zbl 1478.35055 · doi:10.1016/j.jde.2021.10.036
[40] J. Zhang, Blow-up of solutions of nonlinear pseudo-hyperbolic equations of generalized nerve conduction type, Appl. Math. Mech., 10 (1989), 713-721; translated from Appl. Math. Mech., 10 (1989), 679-687(Chinese). · Zbl 0755.35159
[41] S. Zheng, Nonlinear Evolution Equations, Chapman & Hall/CRC Monographs and Surveys in Pure and Applied Mathematics, 133, Chapman & Hall/CRC, Boca Raton, FL, 2004. · Zbl 1085.47058
[42] C. Q. C. Zhong Ma Sun, Existence of strong solutions and global attractors for the suspension bridge equations, Nonlinear Anal., 67, 442-454 (2007) · Zbl 1125.34019 · doi:10.1016/j.na.2006.05.018
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.