×

Finite time blow-up and global solutions for fourth order damped wave equations. (English) Zbl 1310.35046

Summary: This work is devoted to a class of fourth order wave equations with linear damping term and superlinear source term. After showing the uniqueness and existence of local solutions to the equations, we give necessary and sufficient conditions for global existence and finite time blow-up of these solutions. Moreover, the potential well depth is estimated.

MSC:

35B44 Blow-up in context of PDEs
35L76 Higher-order semilinear hyperbolic equations
35L35 Initial-boundary value problems for higher-order hyperbolic equations
Full Text: DOI

References:

[1] Ammann, O. H.; von Kármán, T.; Woodruff, G. B., The Failure of the Tacoma Narrows Bridge (1941), Federal Works Agency
[2] Brownjohn, J. M.W., Observations on non-linear dynamic characteristics of suspension bridges, Earthquake Engrg. Struct. Dyn., 23, 1351-1367 (1994)
[3] Ebihara, Y.; Nakao, M.; Nambu, T., On the existence of global classical solution of initial-boundary value problem for \(\square u - u^3 = f\), Pacific J. Math., 60, 63-70 (1975) · Zbl 0324.35061
[4] Esquivel-Avila, J., The dynamics of a nonlinear wave equation, J. Math. Anal. Appl., 279, 135-150 (2003) · Zbl 1015.35072
[6] Galenko, P.; Danilov, D.; Lebedev, V., Phase-field-crystal and Swift-Hohenberg equations with fast dynamics, Phys. Rev. E, 79, 051110 (2009), (11 pp.)
[7] Gazzola, F., Finite time blow-up and global solutions for some nonlinear parabolic equations, Differential Integral Equations, 17, 983-1012 (2004) · Zbl 1150.35336
[8] Gazzola, F., Nonlinearity in oscillating bridges, Electron. J. Differential Equations, 2013 (2013), No. 211, 47 pp · Zbl 1302.74022
[9] Gazzola, F.; Squassina, M., Global solutions and finite time blow up for damped semilinear wave equations, Ann. Inst. H. Poincaré Anal. Non Linéaire, 23, 185-207 (2006) · Zbl 1094.35082
[10] Gazzola, F.; Weth, T., Finite time blow-up and global solutions for semilinear parabolic equations with initial data at high energy level, Differential Integral Equations, 18, 961-990 (2005) · Zbl 1212.35248
[11] Hale, J. K.; Raugel, G., Convergence in gradient-like systems with applications to PDE, Z. Angew. Math. Phys., 43, 63-124 (1992) · Zbl 0751.58033
[12] Ikehata, R.; Suzuki, T., Stable and unstable sets for evolution equations of parabolic and hyperbolic type, Hiroshima Math. J., 26, 475-491 (1996) · Zbl 0873.35010
[13] Lacarbonara, W., Nonlinear Structural Mechanics (2013), Springer · Zbl 1263.74001
[14] Lazer, A. C.; McKenna, P. J., Large-amplitude periodic oscillations in suspension bridges: some new connections with nonlinear analysis, SIAM Rev., 32, 537-578 (1990) · Zbl 0725.73057
[15] Lazer, A. C.; McKenna, P. J., Global bifurcation and a theorem of Tarantello, J. Math. Anal. Appl., 181, 648-655 (1994) · Zbl 0797.34021
[16] Levine, H. A.; Serrin, J., Global nonexistence theorems for quasilinear evolution equations with dissipation, Arch. Ration. Mech. Anal., 137, 341-361 (1997) · Zbl 0886.35096
[17] Micheletti, A. M.; Pistoia, A., Nontrivial solutions for some fourth-order semilinear elliptic problems, Nonlinear Anal., 34, 509-523 (1998) · Zbl 0929.35053
[18] Micheletti, A. M.; Pistoia, A., On the number of solutions for a class of fourth order elliptic problems, Comm. Appl. Nonlinear Anal., 6, 49-69 (1999) · Zbl 1108.35339
[19] Micheletti, A. M.; Pistoia, A.; Saccon, C., Three solutions of a fourth order elliptic problem via variational theorems of mixed type, Appl. Anal., 75, 43-59 (2000) · Zbl 1026.35033
[20] Nehari, Z., On a class of nonlinear second-order differential equations, Trans. Amer. Math. Soc., 95, 101-123 (1960) · Zbl 0097.29501
[21] Ono, K., On global existence, asymptotic stability and blowing up of solutions for some degenerate non-linear wave equations of Kirchhoff type with a strong dissipation, Math. Methods Appl. Sci., 20, 151-177 (1997) · Zbl 0878.35081
[22] Payne, L. E.; Sattinger, D. H., Saddle points and instability of nonlinear hyperbolic equations, Israel Math. J., 22, 273-303 (1975) · Zbl 0317.35059
[23] Plaut, R. H.; Davis, F. M., Sudden lateral asymmetry and torsional oscillations of section models of suspension bridges, J. Sound Vib., 307, 894-905 (2007)
[24] Sattinger, D. H., On global solution of nonlinear hyperbolic equations, Arch. Ration. Mech. Anal., 30, 148-172 (1968) · Zbl 0159.39102
[25] Scott, R., In the Wake of Tacoma. Suspension Bridges and the Quest for Aerodynamic Stability (2001), ASCE Press
[27] Tarantello, G., A note on a semilinear elliptic problem, Differential Integral Equations, 5, 561-565 (1992) · Zbl 0786.35060
[28] Tsutsumi, M., On solutions of semilinear differential equations in a Hilbert space, Math. Japon., 17, 173-193 (1972) · Zbl 0273.34044
[29] Tsutsumi, M., Existence and nonexistence of global solutions for nonlinear parabolic equations, Publ. Res. Inst. Math. Sci., 8, 211-229 (1972/1973) · Zbl 0248.35074
[30] Ventsel, E.; Krauthammer, T., Thin Plates and Shells: Theory, Analysis and Applications (2001), Marcel Dekker Inc.: Marcel Dekker Inc. New York
[31] Willem, M., Minimax Theorems, Progr. Nonlinear Differential Equations Appl., vol. 24 (1996), Birkhäuser Boston: Birkhäuser Boston Boston, MA · Zbl 0856.49001
[32] Xu, G.; Zhang, J., Existence results for some fourth-order nonlinear elliptic problems of local superlinearity and sublinearity, J. Math. Anal. Appl., 281, 633-640 (2003) · Zbl 1146.35362
[33] Yang, Y.; Zhang, J., Existence of solutions for some fourth-order nonlinear elliptic problems, J. Math. Anal. Appl., 351, 128-137 (2009) · Zbl 1179.35140
[34] Zhang, J.; Li, S., Multiple nontrivial solutions for some fourth-order semilinear elliptic problems, Nonlinear Anal., 60, 221-230 (2005) · Zbl 1103.35027
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.